Calculate $\iint\frac{dxdy}{(1+x^2+y^2)^2}$ over a triangle

fubini-tonelli-theoremsintegrationmultiple integralmultivariable-calculuspolar coordinates

Calculate
$$\iint\frac{dxdy}{(1+x^2+y^2)^2}$$ over the triangle $(0,0)$, $(2,0)$, $(1,\sqrt{3})$.

So I tried changing to polar coordinates and I know that the angle is between $0$ and $\frac{\pi}{3}$ but I couldn't figure how to set the radius because it depends on the angle.

Best Answer

Yes, using polar coordinates is a good idea. We find $$\iint_T\frac{dxdy}{(1+x^2+y^2)^2}=\int_{\theta=0}^{\pi/3}d\theta\int_{\rho=0}^{f(\theta)}\frac{\rho d\rho}{(1+\rho^2)^2} =-\frac{1}{2}\int_{\theta=0}^{\pi/3}\left[\frac{1}{1+\rho^2 }\right]_{\rho=0}^{f(\theta)}\,d\theta$$ where the upperbound $\rho=f(\theta)$ can be obtained from the line joining the points $(1,\sqrt{3})$ and $(2,0)$, $$\rho\sin(\theta)=y=\sqrt{3}(2-x)=\sqrt{3}(2-\rho\cos(\theta))$$ and therefore $$\rho=f(\theta)=\frac{2\sqrt{3}}{\sin(\theta)+\sqrt{3}\cos(\theta)} =\frac{\sqrt{3}}{\sin(\theta+\pi/3)}.$$ Can you take it from here?