Brownian motion: how is DCT for conditional expectation applied on this stopped martingale

conditional-expectationmartingalesproof-explanationstochastic-processesstopping-times

I'm reading a theorem at page $43$ of these notes, i.e.,


Proposition 7.12. Let $M$ be a continuous local martingale with respect to a filtration $\left(\mathcal{F}_t, t \in \mathbb{R}_{+}\right)$ such that
$$
M_0=\begin{array}{ll}
0 & \text { a.s }
\end{array} \text { and } \lim _{t \rightarrow \infty}\langle M\rangle_t=\infty \quad \text { a.s. }
$$

Let us also define
$$
\tau(s)=\inf \left\{t>0:\langle M\rangle_t \geq s\right\},
\quad B_s=M_{\tau(s)}, \quad \mathcal{G}_s=\mathcal{F}_{\tau(s)}.
$$

Then $B$ is a standard Brownian motion with respect to $\left(\mathcal{G}_s, s \in \mathbb{R}_{+}\right)$.

Proof. As already mentioned, the idea is to use Lévy's theorem, i.e., to show that

  • (i) $B$ has continuous trajectories.
  • (ii) $B$ is a local martingale with respect to $\left(\mathcal{G}_s, s \in \mathbb{R}_{+}\right)$.
  • (iii) $\langle B\rangle_s=s$, i.e., $\left(B_s^2-s, s \in \mathbb{R}_{+}\right)$is a local martingale with respect to $\left(\mathcal{G}_s, s \in \mathbb{R}_{+}\right)$.

Let us verify these three statements.

  • (i) As $M$ is continuous, $t \rightarrow\langle M\rangle_t$ is also continuous. Moreover, if $\langle M\rangle$ is constant on some interval, then $M$ also is, so the function $s \mapsto B_s=M_{\tau(s)}$ is continuous.

  • (ii) Let $\tau_n=\inf \left\{t>0:\left|M_t\right| \geq n\right\}, n \geq 1$. For each $n, M^{\tau_n}$ is a martingale such that
    $$
    \mathbb{E}\left(\sup _{t \in[0, T]}\left|M_{t \wedge \tau_n}\right|^2\right)<\infty, \quad \forall T>0,
    $$

    so by the optional stopping theorem (version 2), we have
    $$
    \mathbb{E}\left(M_{\tau\left(s_2\right) \wedge \tau_n} \mid \mathcal{F}_{\tau\left(s_1\right)}\right)=M_{\tau\left(s_1\right) \wedge \tau_n} \quad \text { a.s., } \quad \forall s_2>s_1 \geq 0 .
    $$

    By the dominated convergence theorem (and some details), this implies that
    $$
    \mathbb{E}\left(M_{\tau\left(s_2\right)} \mid \mathcal{F}_{\tau\left(s_1\right)}\right)=M_{\tau\left(s_1\right)} \quad \text { a.s. }
    \quad \quad (\star)
    $$

    i.e.,
    $$
    \mathbb{E}\left(B_{s_2} \mid \mathcal{G}_{s_1}\right)=B_{s_1} \quad \text { a.s. }
    $$

    i.e., $B$ is a martingale with respect to $\left(\mathcal{G}_s, s \in \mathbb{R}_{+}\right)$.

  • (iii) Let $X_t=M_t^2-\langle M\rangle_t$. By assumption, $X^{\tau_n}$ is a martingale $\forall n$, so
    $$
    \mathbb{E}\left(X_{\tau\left(s_2\right) \wedge \tau_n} \mid \mathcal{F}_{\tau\left(s_1\right)}\right)=X_{\tau\left(s_1\right) \wedge \tau_n} \quad \text { a.s., } \quad \forall s_2>s_1 \geq 0
    $$

    Then again by the dominated convergence theorem (and some details), we obtain that
    $$
    \mathbb{E}\left(X_{\tau\left(s_2\right)} \mid \mathcal{F}_{\tau\left(s_1\right)}\right)=X_{\tau\left(s_1\right)} \quad \text { a.s. }
    $$

    i.e.,
    $$
    \mathbb{E}\left(M_{\tau\left(s_2\right)}^2-\langle M\rangle_{\tau\left(s_2\right)} \mid \mathcal{F}_{\tau\left(s_1\right)}\right)=M_{\tau\left(s_1\right)}^2-\langle M\rangle_{\tau\left(s_1\right)} \quad \text { a.s. }
    $$

    As $\langle M\rangle_{\tau(s)}=s$ by definition, we obtain:
    $$
    \mathbb{E}\left(B_{s_2}^2-s_2 \mid \mathcal{G}_{s_1}\right)=B_{s_1}^2-s_1 \quad a . s ., \quad \forall s_2>s_1 \geq 0
    $$

    i.e., $\left(B_s^2-s, s \in \mathbb{R}_{+}\right)$is a martingale with respect to $\left(\mathcal{G}_s, s \in \mathbb{R}_{+}\right)$.


My understanding I have a problem understanding how $(\star)$ is obtained. To apply dominated convergence theorem, we need
$$
|M_{\tau\left(s_2\right) \wedge \tau_n}| \le Z \quad \text{a.s.} \quad \forall n\in \mathbb N,
$$

for some integrable random variable $Z$. I could not see how to have such $Z$.

Could you elaborate on how DCT is applied to get $(\star)$.

Best Answer

By Vitali's convergence theorem, it suffices to show that $( M_{\tau (s_2) \wedge \tau_n}, n \in \mathbb N)$ is uniformly integrable. By OST, $( M_{t \wedge \tau (s_2) \wedge \tau_n}, t \ge 0)$ is a martingale. By Doob's maximal inequality, $$ \begin{align} \mathbb E \big [ \sup_{s \in [0, t]} | M_{s \wedge \tau (s_2) \wedge \tau_n} |^2 \big ] &\le 4 \mathbb E [ | M_{t \wedge \tau (s_2) \wedge \tau_n} |^2 ] \\ &= 4 \mathbb E [ \langle M \rangle_{t \wedge \tau (s_2) \wedge \tau_n} ] \\ &\le 4 \mathbb E [ \langle M \rangle_{\tau (s_2)} ] = 4 s_2. \end{align} $$

By monotone convergence thereom, $$ \mathbb E \big [ \sup_{s \in [0, \infty)} | M_{s \wedge \tau (s_2) \wedge \tau_n} |^2 \big ] \le 4 s_2. $$

Notice that $$ | M_{\tau (s_2) \wedge \tau_n} |^2 \le \sup_{s \in [0, \infty)} | M_{s \wedge \tau (s_2) \wedge \tau_n} |^2. $$

Hence $$ \mathbb E \big [ | M_{\tau (s_2) \wedge \tau_n} |^2 \big ] \le 4 s_2 \quad \forall n \in \mathbb N. $$

The claim then follows from below result (taken from these notes), i.e.,

Example 5.4.3. Let $(X_i)_{i \in I}$ be a family of real random variables. If $\sup _{i \in I} \mathbb E [ |X_i|^r ] < \infty$ for some $r>1$, then $(X_i)$ is uniformly integrable.

Related Question