Boolean algebra simplification proof without truth table

boolean-algebra

How to prove that $A\bar B+(\bar A + B)C=A\bar B+C$?

I don't even know how to start. The distribution law doesn't help. All other laws are not applicable.

Similarly, how to prove that
$AD+B\bar D+C\bar D+A\bar C+\bar A\bar D=A+\bar D$?

Best Answer

The easies way is to compare the truth tables.

\begin{align} A\bar B+(\bar A + B)C&=A\bar B+C \tag{1}\label{1} \\ AD+B\bar D+C\bar D+A\bar C+\bar A\bar D &=A+\bar D \tag{2}\label{2} \end{align}

Things can also be simplified by checking if eqns hold for both values of one variable.

For example, let's check \eqref{1} for $C=0$

\begin{align} A\bar B+(\bar A + B)0&=A\bar B+0 \tag{3}\label{3} \\ A\bar B&=A\bar B \tag{4}\label{4} \end{align}

and $C=1$ separately:

\begin{align} A\bar B+(\bar A + B)1&=A\bar B+1 \tag{5}\label{5} ,\\ A\bar B+(\bar A + B)(A+\bar A)&=1 \tag{6}\label{6} ,\\ A\bar B+A\bar A + AB+\bar A\bar A+\bar AB&=1 \tag{7}\label{7} ,\\ A\bar B+0 + AB+\bar A+\bar AB&=1 \tag{8}\label{8} ,\\ A\bar B+0 + AB+\bar A+\bar AB&=1 \tag{9}\label{9} ,\\ A(\bar B+B)+\bar A(1+B)&=1 \tag{10}\label{10} ,\\ A+\bar A&=1 \tag{11}\label{11} . \end{align}

Similarly, for \eqref{2}, check $A=0$

\begin{align} 0D+B\bar D+C\bar D+0\bar C+1\bar D &=0+\bar D \tag{12}\label{12} ,\\ B\bar D+(C+1)\bar D &=\bar D \tag{13}\label{13} ,\\ B\bar D+\bar D &=\bar D \tag{14}\label{14} ,\\ (B+1)\bar D &=\bar D \tag{15}\label{15} , \end{align}

and $A=1$:

\begin{align} 1D+B\bar D+C\bar D+1\bar C+0\bar D &=1+\bar D \tag{16}\label{16} ,\\ D+B\bar D+C\bar D+\bar C &=1 \tag{17}\label{17} ,\\ D+B\bar D+C\bar D+\bar C(D+\bar D) &=1 \tag{18}\label{18} ,\\ D+B\bar D+C\bar D+\bar CD+\bar C\bar D &=1 \tag{19}\label{19} ,\\ (1+\bar C)D+(B+C+\bar C)\bar D &=1 \tag{20}\label{20} ,\\ D+\bar D &=1 \tag{21}\label{21} . \end{align}

Related Question