Binomial identity of alternating sum of products of binomial coefficients taken two at a time

binomial-coefficientscombinatorial-geometrycombinatoricspolygonssummation

I came across this identity a while back and wasn't able to prove it.

$$\sum_{i=1}^{n-3}\frac{\binom{n-3}{i}\binom{n+i-1}{i}}{i+1}\cdot(-1)^{i+1}=
\begin{cases}
0& \text{if $n$ is odd,}\\
2& \text{if $n$ is even.}
\end{cases}
$$

I could also rewrite it as $$\sum_{i=1}^{n-3}\frac{\binom{n-3}{i}\binom{n+i-1}{i+1}}{n-1}.(-1)^{i+1}$$
I tried converting it to its factorial form but it just ended up being messy. And pairing up terms (first and last, consecutive) did not seem to work at all.

Any hints?

Best Answer

Note that by Vandermonde's_identity, \begin{align*} \sum_{i=1}^{n-3}\frac{\binom{n-3}{i}\binom{n+i-1}{i}}{i+1}\cdot(-1)^{i+1}&=\frac{1}{n-1}\sum_{i=1}^{n-3}\binom{n-3}{i}\binom{n+i-1}{i+1}\cdot(-1)^{i+1}\\ &=\frac{1}{n-1}\sum_{i=1}^{n-3}\binom{n-3}{n-3-i}\binom{1-n}{i+1}\\ &=\frac{1}{n-1}\sum_{k=2}^{n-2}\binom{n-3}{n-2-k}\binom{1-n}{k}\\ &\stackrel{\text{V.I.}}{=} \frac{1}{n-1}\left(\binom{-2}{n-2}-0-(1-n)\right)\\ &=\frac{1}{n-1}\left((n-1)(-1)^n-(1-n)\right)=1+(-1)^n \end{align*} where we used the identity $\binom{-a}{b}=\binom{a+b-1}{b}(-1)^b$.

Related Question