Bijection between $\mathrm{Hom}(D,-)$ functor exact sequnce and $F \leftrightarrow (g,f) $

abstract-algebramodules

The following is a paragraph from Dummit and Foote CH-10 (pp. 388).

Let $ 0 \rightarrow L \xrightarrow{\psi} M \xrightarrow{\varphi} N \rightarrow 0 $ be an exact sequence. Then,
\begin{equation}\label{key}
0 \rightarrow \mathrm{Hom}_{R}(D,L) \xrightarrow{\psi'} \mathrm{Hom}_{R}(D,M) \xrightarrow{\varphi'} \mathrm{Hom}_{R}(D,N) \rightarrow 0
\end{equation}

is exact if and only if there is a bijection $ F \leftrightarrow (g,f) $ between homomorphisms $ F : D \rightarrow M $ and
pairs of homomorphisms $ g : D \rightarrow L $ and $ f : D \rightarrow N $ given by $ F|_{\psi(L)} = \psi'(g) $ and $ f = \varphi'(F) $.

I don't understand what does $ F|_{\psi(L)}$ mean? How can we restrict $F$ to a subset of $M$? Even ignoring this, I could not find a way to prove $\Rightarrow$ result i.e. there is bijection.

Best Answer

Say that two elements $f,g\in {\rm Hom}_R(D,M)$ are equivalent ($f\sim g$) if the image of $f-g$ lies in the image of $\psi$. Let $K$ denote a complete set of representatives of equivalence classes. Then we may bijectively identify: $${\rm Hom}_R(D,M)\cong K \times {\rm Hom}_R(D,{\rm im}(\psi))$$

Exactness of the Hom sequence is by definition equivalent to the following two maps being bijective:

(1) The map $\varphi'\colon K \to {\rm Hom}_R(D,N)$

(2) The map $\psi'\colon{\rm Hom}_R(D,L) \to {\rm Hom}_R(D,{\rm im{(\psi)}}) $.

Thus we may define a relation between ${\rm Hom}_R(D,M)$ and ${\rm Hom}_R(D,N)\times {\rm Hom}_R(D,L)$ which is bijective if and only if the Hom sequence is exact.