$(b_1,b_2,\ldots,b_n)$ is also a permutation of $0,1,\ldots,n-1$

combinatoricselementary-number-theory

Determine all natural numbers $n$ for which there exists a permutation $(a_1,a_2,\ldots,a_n)$ of the numbers $0,1,\ldots,n-1$ such that, if $b_i$ is the remainder of $a_1+a_2+\cdots+ a_i$ upon division by $n$ for $i=1,\ldots,n$, then $(b_1,b_2,\ldots,b_n)$ is also a permutation of $0,1,\ldots,n-1$.

My progress:

So $b_i\equiv a_1+\dots + a_i\mod n.$

So $$\sum_{i=1}^n b_i=a_1+a_1+a_2+a_1+\dots+\dots +a_1+\dots +a_n\equiv n\cdot a_1+(n-1)\cdot a_2 +\dots +2\cdot a_{n-1}+a_n \mod n$$

Let's take examples

  • For $n=2,$

we get $(0,1)\rightarrow (0,1)$ works.

  • For $n=3,$

it's not possible.

Now, looking at $n=3$ case, we have a claim.

Claim: If $a_i\ne 0,~~1<i$

Proof: If not then $b_{i-1}=b_i.$

So we want each $b_i$ to be distinct. Hence for any $k$ -consecutive $a_i,$ we have $$a_{i}+\dots+a_{i+k-1}\not\equiv 0\mod n$$

Now, clearly $n$ is even. Since, if not, then $n|\frac{n(n-1)}{2}.$

So we will have $b_1=b_n.$

Let take some more examples,

  • For $n=4,$

We get that $(0,1,2,3)\rightarrow (0,1,3,2).$

  • For $n=6,$

We get that $(0,2,5,3,1,4)\rightarrow (0,2,1,4,5,3).$

I think it is true for all evens..

Best Answer

Good observation. So now that $n$ is even, can you produce the permutation $(0,n-1,1,n-2,2,n-3,3,\cdots)$?
Hint: Think in pairs and notice that $\ell \cdot (n-1)\equiv n-\ell \pmod n$

Take $(0,n-1,2,n-3,4,n-5,\cdots)$

Related Question