Averaging of probability distribution increases entropy

entropyinformation theory

Let $A\in\mathbb{R}^{n\times n}$ be a doubly stochastic matrix i.e. $a_{ij}\geq 0\;\forall i,j$ and $\sum_i a_{ij}=1\;\forall i$ and $\sum_j a_{ij}=1\;\forall j$. Let $p_1,\dots p_n$ be set of probability. Define new probability set as follows
$$p_i'=\sum_j a_{ij}p_j\;\forall i$$
Show that
$$H(p')\geq H(p)$$
where, $H(p)\triangleq-\sum_i p_i\log(p_i)$


I tried to use Jensen's inequality on $H(p')=-\sum_i \left(\sum_j a_{ij}p_j\right)\log\left(\sum_k a_{ik}p_k\right)$ but that doesn't yield any meaningful progress.

Best Answer

$$\begin{align} H(p')&=-\sum_i\left(\sum_j a_{ij}p_j\right)\log\left(\sum_k a_{ik}p_k\right)\\ &\leq -\sum_i\sum_j a_{ij}p_j\log\left(p_j\right)\quad\because\text{Jensen's inequality}\\ &=H(p)\sum_i a_{ij}\\ &=H(p)\quad\because\text{Doubly stochastic matrix} \end{align}$$