Asymptotic formula for $\sum_{n<x} \frac {d(n)}{\sqrt{n}}$

number theoryriemann-zetasequences-and-series

I am looking for symptotic formula for $\sum_{n<x} \frac {d(n)}{\sqrt{n}}$ which doesn't use $\zeta(\frac{1}{2})$

My guess is – perhaps it is something like $A\sqrt{x}\log{x} + B \sqrt{x} + O(\log{x})$ where $A, B$ are some constants, based on these formulas:

$$\sum_{n<x} \frac {d(n)}{n} = \frac{1}{2}(\log{x})^2 + 2\gamma\log{x} + O(1)$$
$$\sum_{n<x} {d(n)} = x\log{x} + (2\gamma-1)x + O(\sqrt{x})$$

Per Huxley the error term can be improved to
$$\sum_{n<x} {d(n)} = x\log{x} + (2\gamma-1)x + O(x^\theta)$$ with $ \inf \theta \le 131/416 = 0.31490384615 $

Similar questions:

Asymptotic for $\sum_{n<x} \frac {d(n)}{\sqrt{n^a}}$

Asymptotic for $\sum_{n<x} d(n)$

Best Answer

Use Abel's summation formula.

If $$A(x) = \sum_{n< x} d(n) = x \log x +(2\gamma -1) x + O(\sqrt{x})$$

then $$\sum_{n< x}\frac{d(n)}{\sqrt{n}} = \frac{A(x)}{\sqrt{x}} + \int_1^x\frac{A(t)}{2\ t^{3/2}}\ dt$$

From this you should be able to get

$$\sum_{n< x}\frac{d(n)}{\sqrt{n}} = 2\sqrt{x}\log x + 4(\gamma -1)\sqrt{x}+O(\log x)$$

Related Question