Asymptotic expansion of beta function

asymptoticsbeta function

Let $m\geq 3$ be fixed. I want to obtain an asymptotic expansion of
$$f(b) = 2 \mathrm{Re}\left(b^{1-\frac1m} e^{\frac{i\pi}{2m}} B\left(1-\frac1m, \frac{1}{2m}-ib\right)\right)$$
as $b\to \infty$. Here, $B$ is the beta function. The graph of the above function looks like

enter image description here

Hence, I expect that $f$ decays rapidly as $b\to\infty$, but what is its precise decay behavior?

Best Answer

We can write $$ f(b) = 2b^{1 - 1/m} \Gamma \left( {1 - \frac{1}{m}} \right)\operatorname{Re} \left( {\mathrm{e}^{\frac{{\mathrm{i}\pi }}{{2m}}} \frac{{\Gamma \left( { - \mathrm{i}b + \frac{1}{{2m}}} \right)}}{{\Gamma \left( { - \mathrm{i}b + 1 - \frac{1}{{2m}}} \right)}}} \right). $$ It is shown in this paper that \begin{align*} \log \Gamma ( - \mathrm{i}y + a) \sim \left( { - \mathrm{i}y + a - \frac{1}{2}} \right)\log (y\mathrm{e}^{ - \frac{\pi }{2}\mathrm{i}} ) + \mathrm{i}y + \log \sqrt {2\pi } & + \sum\limits_{k = 1}^\infty {\frac{{\mathrm{e}^{ - 2\pi \mathrm{i}ka} }}{{2k}}\mathrm{e}^{ - 2\pi ky} } \\ & - \sum\limits_{n = 2}^\infty {\frac{{B_n (a)}}{{n(n - 1)(\mathrm{i}y)^{n - 1} }}} \end{align*} as $y\to +\infty$ with any fixed $0\leq a\leq 1$. Here $B_n(a)$ are the Bernoulli polynomials. The importance of this expansion is that it takes into account the exponentially small contributions on the Stokes lines for $\Gamma(z+a)$, which is crucial in getting the right asymptotics for $f(b)$. Consequently, \begin{align*} \log \frac{{\Gamma \left( { - \mathrm{i}b + \frac{1}{{2m}}} \right)}}{{\Gamma \left( { - \mathrm{i}b + 1 - \frac{1}{{2m}}} \right)}} \sim\; & \left( {\frac{1}{m} - 1} \right)\log (b\mathrm{e}^{ - \frac{\pi }{2}\mathrm{i}} ) + \sum\limits_{k = 1}^\infty {\frac{{\mathrm{e}^{ - \pi \mathrm{i}k/m} - \mathrm{e}^{\pi \mathrm{i}k/m} }}{{2k}}\mathrm{e}^{ - 2\pi kb} } \\ & + \sum\limits_{n = 2}^\infty {\frac{{B_n \left( {1 - \frac{1}{{2m}}} \right) - B_n \left( {\frac{1}{{2m}}} \right)}}{{n(n - 1)(\mathrm{i}b)^{n - 1} }}} \\ = \; & \left( {\frac{1}{m} - 1} \right)\log b - \frac{\pi }{2}\left( {\frac{1}{m} - 1} \right)\mathrm{i} - \mathrm{i}\sum\limits_{k = 1}^\infty {\frac{{\sin (\pi k/m)}}{k}\mathrm{e}^{ - 2\pi kb} } \\ & - \sum\limits_{n = 1}^\infty {\frac{{( - 1)^n B_{2n + 1} \left( {\frac{1}{{2m}}} \right)}}{{n(2n + 1)b^{2n} }}} \\ \\ = \; & \left( {\frac{1}{m} - 1} \right)\log b - \frac{\pi }{2}\left( {\frac{1}{m} - 1} \right)\mathrm{i} - \mathrm{i}\sum\limits_{k = 1}^\infty {\frac{{\sin (\pi k/m)}}{k}\mathrm{e}^{ - 2\pi kb} }\\ & + \mathcal{O}\!\left( {\frac{1}{{b^2 }}} \right), \end{align*} as $b\to +\infty$, with the big-$\mathcal{O}$ function being real valued. Using this result in the above form for $f(b)$ and simplifying, we find \begin{align*} f(b) & = 2\Gamma \left( {1 - \frac{1}{m}} \right)\sin \left( {\sum\limits_{k = 1}^\infty {\frac{{\sin (\pi k/m)}}{k}\mathrm{e}^{ - 2\pi kb} } } \right)\left( {1 + \mathcal{O}\!\left( {\frac{1}{{b^2 }}} \right)} \right) \\ & = 2\Gamma \left( {1 - \frac{1}{m}} \right)\sin \left( {\frac{\pi }{m}} \right)\mathrm{e}^{ - 2\pi b} \left( {1 + \mathcal{O}\!\left( {\frac{1}{{b^2 }}} \right)} \right) \\ & = \frac{{2\pi }}{{\Gamma \left( {\frac{1}{m}} \right)}}\mathrm{e}^{ - 2\pi b} \left( {1 + \mathcal{O}\!\left( {\frac{1}{{b^2 }}} \right)} \right) \end{align*} as $b\to+\infty$.

Related Question