Asymptotic Expansion – Techniques for Improper Integrals

asymptoticscalculusimproper-integralsintegration

I'm having trouble proving this asymptotic expansion (with $0 \leq \delta<1/2$)

$$I(\delta) = \int_\delta ^{1-\delta} dx \frac{x (1-x)}{\sqrt{x^2-\delta^2}\sqrt{(1-x)^2-\delta^2}} \sim 1 – \delta^2 \ (\delta \rightarrow 0).$$

I tried naïve approaches like writing the Taylor expansion of the integrand before integrating it, but I didn't get a good result.

I also tried to calculate the derivatives $I^{(n)}(0)$, but I couldn't get anywhere.

Even for a simple integral like

$$J(\delta) = \int_\delta ^{1} dx \frac{x }{\sqrt{x^2-\delta^2}} = \sqrt{1-\delta^2} \sim 1 – \frac{\delta^2 }{2}\ (\delta \rightarrow 0) $$ I don't know how to find the asymptotic form without solving the integral directly first.
Any advice would be greatly appreciated.

Best Answer

Here I will solve the integral in terms of complete elliptic integrals. Then the claim follows from the known asymptotic behaviour of these special functions.

Note that the integrand and the bounds are symmetric about $x = 1/2$. This becomes even clearer if we apply the shift $x = y + 1/2$. Writing $\delta = \varepsilon/2$ temporarily to simplify notation a bit, we find \begin{align} I (\varepsilon/2) &= \int \limits_{-(1-\varepsilon)/2}^{(1-\varepsilon)/2} \mathrm{d} y \, \frac{1 - 4 y^2}{\sqrt{[(1+\varepsilon)^2 - 4 y^2][(1-\varepsilon)^2 - 4 y^2]}} \\ &= 2 \int \limits_0^{(1-\varepsilon)/2} \mathrm{d} y \, \frac{1 - 4 y^2}{\sqrt{[(1+\varepsilon)^2 - 4 y^2][(1-\varepsilon)^2 - 4 y^2]}}\, . \end{align} Rescaling with $y = (1-\varepsilon)z/2$ and rearranging, we end up with \begin{align} I (\varepsilon/2) &= \int \limits_0^1 \mathrm{d} z \, \frac{1 - (1-\varepsilon)^2 z^2}{\sqrt{[(1+\varepsilon)^2 - (1-\varepsilon)^2 z^2][1-z^2]}} \\ &= \int \limits_0^1 \mathrm{d} z \, \left(\frac{(1+\varepsilon) \sqrt{1 - \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^2 z^2}}{\sqrt{1-z^2}} - \frac{\varepsilon (2 + \varepsilon)}{(1+\varepsilon)\sqrt{1 - \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^2 z^2}\sqrt{1-z^2}} \right)\, . \end{align} But these are just two complete elliptic integrals, which we can simplify using Landen transformations: \begin{align} I (\varepsilon/2) &= (1+\varepsilon) \operatorname{E} \left(\frac{1-\varepsilon}{1+\varepsilon}\right) - \frac{\varepsilon (2 + \varepsilon)}{1 + \varepsilon} \operatorname{K} \left(\frac{1-\varepsilon}{1+\varepsilon}\right) \\ &= \operatorname{E} \left(\sqrt{1-\varepsilon^2}\right) - \frac{\varepsilon^2}{2} \operatorname{K} \left(\sqrt{1-\varepsilon^2}\right) \, . \end{align}

Finally, their asymptotic expansions yield \begin{align} I(\delta) &= \operatorname{E} \left(\sqrt{1-4\delta^2}\right) - 2 \delta^2 \operatorname{K} \left(\sqrt{1-4\delta^2}\right) \\ &\sim 1 - \delta^2 - \left(\log(\delta/2) + \frac{5}{4}\right) \delta^4 + \operatorname{\mathcal{O}} \left(\log(\delta) \delta^6\right) \end{align} as $\delta \to 0^+$.

Related Question