Asymptotic behaviour of $\int_0^{\infty } x^{-x} \exp (n x) dx$

asymptoticsdefinite integralsintegrationlimits

I was given that
$$\underset{n\to \infty }{\text{lim}}\frac{\int_0^{\infty } x^{-x} \exp (n x) \, dx}{\exp \left(\frac{n-1}{2}+\exp (n-1)\right)}=\sqrt{2 \pi }$$
This is accessible via Laplace method. But how can we compute its full asymptotic expansion w.r.t $n$? Any help will be appreciated.

Best Answer

Using the saddle point method with $a=0$, $b=+\infty$, $t_0=\mathrm{e}^{-1}$, $z=\mathrm{e}^n$, $p(t)=t\log t$ and $q(t)=1$, we find \begin{multline*} \int_0^{ + \infty } {x^{ - x} \mathrm{e}^{nx} \mathrm{d}x} = \mathrm{e}^n \int_0^{ + \infty } {\mathrm{e}^{ - \mathrm{e}^n t\log t} \mathrm{d}t} \\ \sim \exp \left( {\tfrac{{n - 1}}{2} +\mathrm{e}^{n - 1} } \right)\sqrt {2\pi } \left( {1 + \sum\limits_{k = 1}^\infty {\sqrt {\frac{{2\mathrm{e}}}{\pi }} \Gamma \left( {k + \tfrac{1}{2}} \right)\frac{{b_{2k} }}{{\mathrm{e}^{nk} }}} } \right), \end{multline*} where the coefficients are given as complex residues: $$ b_{2k} = \frac{1}{2}\mathop{\operatorname{Res}}\limits_{t = \mathrm{e}^{ - 1} }\left[ {(t\log t + \mathrm{e}^{ - 1} )^{ - k - 1/2} } \right] = \frac{1}{2}\mathrm{e}^{k - 1/2} \mathop{\operatorname{Res}}\limits_{s = 0} \left[ {((1 + s)\log (1 + s) - s)^{ - k - 1/2} } \right]. $$ For example, $$ b_2 = - \frac{1}{{12}}\sqrt {\frac{\mathrm{e}}{2}} ,\quad b_4 = - \frac{{23\mathrm{e}}}{{864}}\sqrt {\frac{\mathrm{e}}{2}} , $$ whence $$ \int_0^{ + \infty } {x^{ - x} \mathrm{e}^{nx} \mathrm{d}x} \sim \exp \left( {\tfrac{{n - 1}}{2} + \mathrm{e}^{n - 1} } \right)\sqrt {2\pi } \left( {1 - \frac{1}{{24}}\frac{1}{{\mathrm{e}^{n - 1} }} - \frac{{23}}{{1152}}\frac{1}{{\mathrm{e}^{2(n - 1)} }} + \cdots } \right). $$

Related Question