Asymptotic behavior of a sequence

calculuslimitsreal-analysissequences-and-seriessummation

I'm trying to generalize my previous question. Suppose that function $f:\mathbb{N}\to \mathbb{R}$ satisfies the following conditions:

$1. \ \ \forall i\in \mathbb{N}:f(i) = 2^{-l_i} \text{ for some} \ l_i\in \mathbb{N} \\ 2. \ \ \sum_{i=1}^{\infty}f(i)\le1$

I want to find the following limit: $$\lim_{n\to\infty}nf(n) = \ ?$$In the case that the first condition is ignored and $f(i)$ is not monotone, we can construct $f(i)$ such that the limit doesn't exist. Is it possible to construct such an example for the case both conditions are satisfied? Also if the function is monotone, the limit is zero. It can be easily shown that:

$1. \ \forall n\in \mathbb{N}:\ \sum_{i=1}^{n}f(i) \lt 1 \\ 2. \ \forall i\in \mathbb{N}: \ f(i)\le \frac{1}{2}$

Best Answer

Example 1. (Using the ideas of Greg Martin and S.H.W.)

Let $A=\{(2\times 4^k)^2~|~k\in \{0\}\cup {\mathbb N}\}.$ Define $f:A\rightarrow {\mathbb R}$ by $$f(n)=n^{-1/2},~{\rm so~}f((2\times 4^{i-1})^2)=\frac 1{2^{2i-1}},i\in {\mathbb N}.$$ Then $$\sum_{n\in A}f(n)=\sum_{i=1}^\infty \frac 1{2^{2i-1}}=\frac 2 3$$ and $\lim_{n\rightarrow \infty}nf(n)=\sqrt{n}\rightarrow \infty$ if $n$ stays in $A.$

To extend the above $f$ to a function $f:{\mathbb N}\rightarrow {\mathbb R},$ let $f(n)=2^{-2n}$ for $n\in {\mathbb N}\setminus A.$ And one checks that $$\sum_{n\in {\mathbb N}\setminus A}f(n)=\sum_{n\in {\mathbb N}\setminus A}2^{-2n} < \sum_{n\in {\mathbb N}}2^{-2n}=\frac 1 3, $$ hence $f$ satisfies the two conditions in the original question but $\lim_{n\rightarrow \infty} nf(n)$ does not exist.

Example 2. Let $f:{\mathbb N}\rightarrow A:=\{2^{-i}~|~i\in {\mathbb N}\}$ be a bijection defined by $$f(i)=2^{-i},i\in {\mathbb N}.$$ Then $\sum_{i=1}^\infty f(i)=1.$ This function satisfies the two conditions in the original question with $\lim_{n\rightarrow \infty}nf(n)=0.$ One can do a “surgery” of $f$ to get a bijection $f^*:{\mathbb N}\rightarrow A$ satisfying the two conditions but $\lim_{n\rightarrow \infty}nf^*(n)$ does not exist. To do this, let $$B:=\{2^{2k-1}~|~k\in {\mathbb N}\}~{\rm and~}C:=\{2^{-2k}~|~k\in {\mathbb N}\}$$ and define $$f^*:B\rightarrow C$$ by $$f^*(2^{2k-1})=2^{-2k},k\in {\mathbb N}.$$ Then $$\lim_{n\rightarrow\infty} nf^*(n)=\frac 1 2~{\rm if~}n\in B.\qquad (1)$$ To get an extension for $f^*$ to $f^*:{\mathbb N}\rightarrow A,$ one just defines a natural map $$f^*:{\mathbb N}\setminus B\rightarrow A\setminus C$$ such that ${\mathbb N}\setminus B$ and $A\setminus C$ retain the natural ordering, and $f^*$ maps the $j$th element of ${\mathbb N}\setminus B$ to the $j$th element of $A\setminus C.$ Then $f^*:{\mathbb N}\rightarrow A$ will be as follows if one lists the first few terms, where $2,8,32,$ etc. are elements in $B$.

$$\begin{array} {|c|c|c|c|c|c|c|c|c|c|c|c|c|} \hline i & 1 &{\bf 2}& 3& 4& \cdots& 7& {\bf 8}& 9&\cdots& 23& \cdots&{\bf 32}\\ \hline f^*(i) & 2^{-1} & 2^{-2}& 2^{-3}& 2^{-5}& \cdots& 2^{-11}& 2^{-4} & 2^{-13}& \cdots& 2^{-41}& \cdots& 2^{-6}\\ \hline \end{array}$$

By construction, $\sum_i f^*(i)=\sum_if(i)=1$ and $f^*(i)=2^{-l_i}$ for some $l_i\in {\mathbb N}.$ Now one can find a subsequence of ${\mathbb N}$ consisting of prime numbers $p$ such that $$2^{2k-1}<p<2^{2k+1},$$ the existence of which is guaranteed by the Bertrand’s postulate. One can show that $$\lim_{p\rightarrow\infty}pf^*(p)=0.\qquad (2)$$

To see this, suppose $p$ (indexed by $k$) with $2^{2k-1}<p<2^{2k+1}$ has been chosen. Then one has $$f^*(p)=2^{-[2(p-k)-1]},$$ since $f^*(p)$ has to avoid $k$ terms in $C$ (corresponding to the $k$ terms in $B$ as pre-images, namely $2^1,2^3,\cdots,2^{2k-1}$ on which $f^*$ is defined) with other $p-k$ terms in $A\setminus C=\{2^{-(2i-1)}~|~i\in {\mathbb N}\}$ filled.

It follows that $$pf^*(p)=\frac p{2^{2p-2k-1}}=\frac p{2^{2p}}\cdot 2^{2k+1}<\frac {(2^{2k+1})^2}{2^{2p}}=\frac {(2^2\cdot 2^{2k-1})^2}{2^{2p}}<\frac {2^4\cdot p^2}{2^{2p}}\rightarrow 0$$ as $p\rightarrow \infty.$ This proves (2). Combining (1) and (2), one sees that $\lim_{n\rightarrow \infty}nf^*(n)$ does not exist.

Note. There is much freedom to choose $p.$ For example, one can choose $p_1=7$ with $2^{2\cdot 1-1}<7<2^{2\cdot 2-1}$ and $p_2=23$ with $2^{2\cdot 2-1}<23<2^{2\cdot 3-1},$ so from the table, one sees that $f^*(7)=2^{-[2(7-1)-1]}=2^{-11}$ and $f^*(23)=2^{-[2(23-2)-1]}=2^{-41},$ etc.

Related Question