$A\subset\mathbb{R}, t\in\mathbb{R}\Rightarrow |tA|=|t||A|$

measure-theoryouter-measurereal-analysissolution-verification

I have proved the following statement and I would like to know If I have made any mistakes, thanks.

"Suppose $A\subset\mathbb{R}$ and $t\in\mathbb{R}$. Let $tA:=\{ta:a\in A\}$. Prove that $|tA|=|t||A|$. (Assume that $0\cdot\infty$ is defined to be $0$)."


NOTE: $|\cdot|$ refers to outer measure, i.e. for $A\subset\mathbb{R},\ |A|:=\inf\{\sum_{k=1}^{\infty}l(I_k): I_1,I_2,\dots\text{ are open intervals such that }A\subset\bigcup_{k=1}^{\infty}I_k\}$; the length of an open interval $I\subset\mathbb{R}$ is defined as

$\ell(I):=\begin{cases}
b-a & \text{if }I=(a,b),\ a,b\in\mathbb{R}, a<b; \\
0 & \text{if }I=\emptyset; \\
\infty & \text{if } I=(-\infty, a)\text{ or } I=(a,\infty);\\
\infty & \text{ if }I=(-\infty,\infty)
\end{cases} $


My proof:
If $t=0$ then $tA=\{0\}$ so $|tA|=0$ (since finite sets have outer measure $0$) and $|t||A|=\begin{cases}
0\cdot |A| =0 & \text{ if } |A|<\infty\\
0\cdot |A| =0 & \text{ if } |A|=\infty & \text{(since by hypothesis }0\cdot\infty=0)
\end{cases}\ =0$
so $|tA|=|t||A|$, as desired.

Now, suppose $t\neq 0$ and let $I_1,I_2,\dots$ be a sequence of open intervals ($I_k=(a_k,b_k),\ a_k\in\mathbb{R}\cup-\{\infty\}, b_k\in\mathbb{R}\cup \{+\infty\}, a_k<b_k$ or $I_k=\emptyset$) such that $A\subset\bigcup_{k=1}^{\infty}I_k$: then $tI_1,tI_2,\dots $is a sequence of open intervals such that $tA\subset\bigcup_{k=1}^{\infty}tI_K$ ($a\in A\Rightarrow a\in I_K=(a_K,b_K)\ a_K<b_K$ for some $K\geq 1\Rightarrow a_K<a<b_K\Rightarrow
\begin{cases}
ta_K<ta<tb_K & \text{ if } t>0 \\
tb_K<ta<ta_K &\text{ if } t<0
\end{cases}$
i.e. $ta\in tI_K$)
and $$l(tI_k):=\begin{cases}
tb_k-ta_k & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k, t>0; \\
ta_k-tb_k & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k, t<0; \\
0 & \text{if }I_k=\emptyset; \\
\infty & \text{if } I_k=(-\infty, b_k)\text{ or } I_k=(a_k,\infty);\\
\infty & \text{ if }I_k=(-\infty,\infty)
\end{cases}= \begin{cases}
t(b_k-a_k) & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k, t>0; \\
-t(b_k-a_k) & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k, t<0; \\
0 & \text{if }I_k=\emptyset; \\
\infty & \text{if } I_k=(-\infty, b_k)\text{ or } I_k=(a_k,\infty);\\
\infty & \text{ if }I_k=(-\infty,\infty)
\end{cases}=\begin{cases}
|t|(b_k-a_k) & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k, t\neq 0; \\
|t| 0 & \text{if }I_k=\emptyset; \\
|t|\infty & \text{if } I_k=(-\infty, b_k)\text{ or } I_k=(a_k,\infty);\\
|t|\infty & \text{ if }I_k=(-\infty,\infty)
\end{cases}=|t|\begin{cases}
(b_k-a_k) & \text{if }I_k=(a_k,b_k),\ a_k,b_k\in\mathbb{R}, a_k<b_k; \\
0 & \text{if }I_k=\emptyset; \\
\infty & \text{if } I_k=(-\infty, b_k)\text{ or } I_k=(a_k,\infty);\\
\infty & \text{ if }I_k=(-\infty,\infty)
\end{cases}=|t|I_k$$
so
$$|tA|\leq\sum_{k=1}^{\infty}\ell (tI_k)=\sum_{k=1}^{\infty}|t|\ell (I_k)=|t|\sum_{k=1}^{\infty}\ell (I_k)$$ and by taking the $\inf$ over all open coverings of $A$ we find that $$|tA|\leq |t||A|$$
From this inequality we also get $$\left| \frac{1}{t}tA \right| \leq \left| \frac{1}{t} \right||tA|\Rightarrow |A|\leq \frac{1}{|t|}|tA|\Rightarrow |t||A|\leq |tA|$$
thus $|tA|=|t||A|\ \forall t\in\mathbb{R}, A\subset\mathbb{R}$, as desired.

Best Answer

You have to be a bit careful declaring the equality of the infima at the end of the proof. They are of course equal, but that is essentially what you need to prove.

You've established that if $I$ is an interval and $t \in \mathbf R$ then $\ell(tI) = |t| \ell(I)$. If $A \subset \mathbf R$ and $\{I_k\}$ is a countable cover of $A$ by intervals, then $\{tI_k\}$ is a countable cover of $tA$ and thus $$|tA| \le \sum \ell(tI_k) = |t| \sum \ell(I_k).$$ Now take the infimum over all countable coverings of $A$ to find $$|tA| \le |t||A|.$$

This inequality also implies $$ \left| \frac 1t tA \right| \le \frac{1}{|t|} |tA|$$ whenever $t \not= 0$ giving you $|t||A| \le |tA|$ as well.