Apéry’s constant by triple integral

integrationpower seriesriemann-zetazeta-functions

I would like to ask if someone would help me solve the following integral.
\begin{equation}
\zeta(3) = \int_0^1 \int_0^1 \int_0^1 \frac{1}{1-xyz}\ dx\,dy\,dz
\end{equation}

It occurred to me that if I transformed the integral into spherical, cylindrical, polar coordinates, or turned the volume created by integrals. Maybe it would help in solving.

Thank you in advance.

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\int_{0}^{1}\int_{0}^{1}\int_{0}^{1} {\dd x\,\dd y\,\dd z \over 1 - xyz}} = \int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \bracks{\sum_{n = 0}^{\infty}\pars{xyz}^{n}}\dd x\,\dd y\,\dd z \\[5mm] = &\ \sum_{n = 0}^{\infty}\pars{\int_{0}^{1}x^{n}\,\dd x} \pars{\int_{0}^{1}y^{n}\,\dd y} \pars{\int_{0}^{1}z^{n}\,\dd z} = \sum_{n = 0}^{\infty}{1 \over \pars{n + 1}^{3}} \\[5mm] = &\ \sum_{n = 1}^{\infty}{1 \over n^{3}} = \bbx{\zeta\pars{3}} \end{align}

Related Question