Angle between tangent to a logarithmic spiral at a point and the curve

anglecurvesdifferential-geometry

For the logarithmic spiral $\gamma(t) =(e^t \cos t, e^t \sin t)$ the angle between $\gamma(t)$ and the tangent vector at $\gamma(t)$ is independent of $t$. But is the angle value $\pi/4$ or $3\pi/4$?

Best Answer

With

$\gamma(t) = (e^t \cos t, e^t \sin t) = e^t(\cos t, \sin t), \tag 1$

we have

$\gamma'(t) = e^t(\cos t, \sin t) + e^t(-\sin t, \cos t), \tag 2$

and

$\gamma(t) \cdot \gamma'(t) = e^{2t}; \tag 3$

furthermore,

$\gamma(t) \cdot \gamma(t) = e^{2t}, \tag 4$

and

$\gamma'(t) \cdot \gamma'(t) = 2e^{2t}, \tag 5$

respectively; thus,

$\Vert \gamma(t) \Vert = (\gamma(t) \cdot \gamma(t))^{1/2} = e^t, \tag 6$

and

$\Vert \gamma'(t) \Vert = (\gamma'(t) \cdot \gamma'(t))^{1/2} = \sqrt 2 e^t; \tag 7$

therefore, the angle $\theta$ 'twixt $\gamma(t)$ and $\gamma'(t)$ satisfies

$\cos \theta = \dfrac{\gamma(t) \cdot \gamma'(t)}{\Vert \gamma(t) \Vert \Vert \gamma'(t) \Vert} = \dfrac{e^{2t}}{\sqrt 2 e^{2t}}= \dfrac{1}{\sqrt 2} = \dfrac{\sqrt 2}{2}, \tag 8$

whence

$\theta = \dfrac{\pi}{4}, \tag 9$

assuming that

$0 \le \theta \le \pi. \tag{10}$

Related Question