An integral related to Gamma value.

calculusclosed-formdefinite integralselliptic integralsintegration

We have:
$$\int_{0}^{\pi/2}\frac{\sin{x}\log{(\tan{(x/2))}+x}}{\sqrt{\sin{x}}(\sin{x}+1)}dx=\pi-\frac{\sqrt{2\pi}\Gamma{(1/4)}^{2}}{16}-\frac{\sqrt{2}\pi^{5/2}}{2\Gamma{(1/4)}^{2}}\tag{1}.$$
As other integrals, Mathametica and Wolfram Alpha are unable to deal with it
(see Wolfram Alpha response).
The proof I have is not elementary and it is based on the following identity:
$$\Im\left(K(\sqrt{\frac{2k}{1+k}})\right)=\Im \left(K(\sqrt{\frac{1-k}{1+k}})-K(\sqrt{\frac{1+k}{1-k}})\cdot\sqrt{\frac{1+k}{1-k}}\right),\tag{2}$$
where: $$K(k)=\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-k^2\sin^{2}{x}}},\tag{3}$$
is the complete elliptic integral of the first kind. The proof follows from $(2)$ integrating both sides carefully.

Question:
Can we prove $(1)$ using only Feynman's trick and Beta function? Thanks for your cooperation.

Best Answer


Let $\mathcal{I}$ denote the value of the definite integral in question:

$$\mathcal{I}:=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,\frac{\theta+\sin{\left(\theta\right)}\ln{\left(\tan{\left(\frac{\theta}{2}\right)}\right)}}{\left[1+\sin{\left(\theta\right)}\right]\sqrt{\sin{\left(\theta\right)}}}\approx0.141216.$$


$$\begin{align} \mathcal{I} &=\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,\frac{\theta+\sin{\left(\theta\right)}\ln{\left(\tan{\left(\frac{\theta}{2}\right)}\right)}}{\left[1+\sin{\left(\theta\right)}\right]\sqrt{\sin{\left(\theta\right)}}}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{2}{1+t^{2}}\cdot\frac{2\arctan{\left(t\right)}+\left(\frac{2t}{1+t^{2}}\right)\ln{\left(t\right)}}{\left(1+\frac{2t}{1+t^{2}}\right)\sqrt{\frac{2t}{1+t^{2}}}};~~~\small{\left[\theta=2\arctan{\left(t\right)}\right]}\\ &=\int_{0}^{1}\mathrm{d}t\,\frac{2\left[2\arctan{\left(t\right)}+\left(\frac{2t}{1+t^{2}}\right)\ln{\left(t\right)}\right]}{\left(1+t\right)^{2}\sqrt{\frac{2t}{1+t^{2}}}}\\ &=\int_{0}^{1}\mathrm{d}u\,\frac{2\arctan{\left(\frac{1-u}{1+u}\right)}+\left(\frac{1-u^{2}}{1+u^{2}}\right)\ln{\left(\frac{1-u}{1+u}\right)}}{\sqrt{\frac{1-u^{2}}{1+u^{2}}}};~~~\small{\left[t=\frac{1-u}{1+u}\right]}\\ &=\int_{0}^{1}\mathrm{d}u\,\frac{2\left[\arctan{\left(1\right)}-\arctan{\left(u\right)}\right]-2\left(\frac{1-u^{2}}{1+u^{2}}\right)\operatorname{artanh}{\left(u\right)}}{\sqrt{\frac{1-u^{2}}{1+u^{2}}}}\\ &=2\int_{0}^{1}\mathrm{d}u\,\frac{\arctan{\left(1\right)}}{\sqrt{\frac{1-u^{2}}{1+u^{2}}}}-2\int_{0}^{1}\mathrm{d}u\,\frac{\arctan{\left(u\right)}}{\sqrt{\frac{1-u^{2}}{1+u^{2}}}}-2\int_{0}^{1}\mathrm{d}u\,\sqrt{\frac{1-u^{2}}{1+u^{2}}}\operatorname{artanh}{\left(u\right)}\\ &=\frac{\pi}{2}\int_{0}^{1}\mathrm{d}u\,\frac{1+u^{2}}{\sqrt{1-u^{4}}}-2\int_{0}^{1}\mathrm{d}u\,\sqrt{\frac{1+u^{2}}{1-u^{2}}}\arctan{\left(u\right)}\\ &~~~~~-2\int_{0}^{1}\mathrm{d}u\,\sqrt{\frac{1-u^{2}}{1+u^{2}}}\operatorname{artanh}{\left(u\right)}\\ &=\frac{\pi}{2}\int_{0}^{1}\mathrm{d}x\,\frac{1+\sqrt{x}}{4x^{3/4}\sqrt{1-x}};~~~\small{\left[u=\sqrt[4]{x}\right]}\\ &~~~~~-2\int_{0}^{1}\mathrm{d}u\,\left[\sqrt{\frac{1+u^{2}}{1-u^{2}}}\arctan{\left(u\right)}+\sqrt{\frac{1-u^{2}}{1+u^{2}}}\operatorname{artanh}{\left(u\right)}\right]\\ &=\frac{\pi}{8}\left[\int_{0}^{1}\mathrm{d}x\,\frac{1}{x^{3/4}\sqrt{1-x}}+\int_{0}^{1}\mathrm{d}x\,\frac{1}{\sqrt[4]{x}\sqrt{1-x}}\right]\\ &~~~~~-2\int_{0}^{1}\mathrm{d}u\,\left[\sqrt{\frac{1+u^{2}}{1-u^{2}}}\int_{0}^{1}\mathrm{d}x\,\frac{u}{1+x^{2}u^{2}}+\sqrt{\frac{1-u^{2}}{1+u^{2}}}\int_{0}^{1}\mathrm{d}x\,\frac{u}{1-x^{2}u^{2}}\right]\\ &=\frac{\pi}{8}\left[\int_{0}^{1}\mathrm{d}x\,x^{-3/4}\left(1-x\right)^{-1/2}+\int_{0}^{1}\mathrm{d}x\,x^{-1/4}\left(1-x\right)^{-1/2}\right]\\ &~~~~~-\int_{0}^{1}\mathrm{d}u\int_{0}^{1}\mathrm{d}x\,(2u)\left[\frac{1}{1+x^{2}u^{2}}\sqrt{\frac{1+u^{2}}{1-u^{2}}}+\frac{1}{1-x^{2}u^{2}}\sqrt{\frac{1-u^{2}}{1+u^{2}}}\right]\\ &=\frac{\pi}{8}\left[\operatorname{B}{\left(\frac14,\frac12\right)}+\operatorname{B}{\left(\frac34,\frac12\right)}\right]\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}u\,(2u)\left[\frac{1}{1+x^{2}u^{2}}\sqrt{\frac{1+u^{2}}{1-u^{2}}}+\frac{1}{1-x^{2}u^{2}}\sqrt{\frac{1-u^{2}}{1+u^{2}}}\right]\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}v\,\left[\frac{1}{1+x^{2}v}\sqrt{\frac{1+v}{1-v}}+\frac{1}{1-x^{2}v}\sqrt{\frac{1-v}{1+v}}\right];~~~\small{\left[u^{2}=v\right]}\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}-\int_{0}^{1}\mathrm{d}x\int_{1}^{0}\mathrm{d}w\,\frac{(-2)}{\left(1+w\right)^{2}}\\ &~~~~~\times\left[\frac{1}{1+x^{2}\left(\frac{1-w}{1+w}\right)}\sqrt{\frac{1}{w}}+\frac{1}{1-x^{2}\left(\frac{1-w}{1+w}\right)}\sqrt{w}\right];~~~\small{\left[v=\frac{1-w}{1+w}\right]}\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}w\,\frac{2}{\left(1+w\right)\sqrt{w}}\\ &~~~~~\times\left[\frac{1}{\left(1+w\right)+x^{2}\left(1-w\right)}+\frac{w}{\left(1+w\right)-x^{2}\left(1-w\right)}\right],\\ \end{align}$$

and then,

$$\begin{align} \mathcal{I} &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}w\,\frac{2}{\left(1+w\right)\sqrt{w}}\\ &~~~~~\times\left[\frac{1}{\left(1+x^{2}\right)+\left(1-x^{2}\right)w}+\frac{w}{\left(1-x^{2}\right)+\left(1+x^{2}\right)w}\right]\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}w\,\frac{1}{\left(1+x^{2}\right)}\left[\frac{1}{1+\left(\frac{1-x^{2}}{1+x^{2}}\right)w}+\frac{w}{\left(\frac{1-x^{2}}{1+x^{2}}\right)+w}\right]\frac{2}{\left(1+w\right)\sqrt{w}}\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}w\,\frac{1}{x^{2}}\left[\frac{2}{1+w}-\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{1+\left(\frac{1-x^{2}}{1+x^{2}}\right)w}-\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{\left(\frac{1-x^{2}}{1+x^{2}}\right)+w}\right]\frac{1}{\sqrt{w}}\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\int_{0}^{1}\mathrm{d}y\,\frac{2}{x^{2}}\left[\frac{2}{1+y^{2}}-\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{1+\left(\frac{1-x^{2}}{1+x^{2}}\right)y^{2}}-\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{\left(\frac{1-x^{2}}{1+x^{2}}\right)+y^{2}}\right];~~~\small{\left[\sqrt{w}=y\right]}\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\,\frac{2}{x^{2}}\left[\int_{0}^{1}\mathrm{d}y\,\frac{2}{1+y^{2}}-\int_{0}^{1}\mathrm{d}y\,\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{1+\left(\frac{1-x^{2}}{1+x^{2}}\right)y^{2}}-\int_{0}^{1}\mathrm{d}y\,\frac{\left(\frac{1-x^{2}}{1+x^{2}}\right)}{\left(\frac{1-x^{2}}{1+x^{2}}\right)+y^{2}}\right]\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}\\ &~~~~~-\int_{0}^{1}\mathrm{d}x\,\frac{2}{x^{2}}\left[\frac{\pi}{2}-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\arctan{\left(\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)}-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\arctan{\left(\frac{1}{\sqrt{\frac{1-x^{2}}{1+x^{2}}}}\right)}\right]\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}-\int_{0}^{1}\mathrm{d}x\,\frac{2}{x^{2}}\left[\frac{\pi}{2}-\frac{\pi}{2}\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right]\\ &=\frac{\pi}{8}\operatorname{B}{\left(\frac14,\frac12\right)}+\frac{\pi}{8}\operatorname{B}{\left(\frac34,\frac12\right)}-\pi\int_{0}^{1}\mathrm{d}x\,\frac{1}{x^{2}}\left[1-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right].\\ \end{align}$$

Evaluating the remaining integral by parts, we find

$$\begin{align} \int_{0}^{1}\mathrm{d}x\,\frac{1}{x^{2}}\left[1-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right] &=\int_{0}^{1}\mathrm{d}x\,\left[1-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right]\frac{d}{dx}\left[-\frac{1}{x}\right]\\ &=\left[-\frac{1-\sqrt{\frac{1-x^{2}}{1+x^{2}}}}{x}\right]_{x=0}^{x=1}-\int_{0}^{1}\mathrm{d}x\,\left[-\frac{1}{x}\right]\frac{d}{dx}\left[1-\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right];~~~\small{I.B.P.}\\ &=-1+\int_{0}^{1}\mathrm{d}x\,\frac{1}{x}\cdot\frac{2x}{\left(1+x^{2}\right)^{2}\sqrt{\frac{1-x^{2}}{1+x^{2}}}}\\ &=-1+\int_{0}^{1}\mathrm{d}x\,\frac{2}{\left(1+x^{2}\right)\sqrt{1-x^{4}}}\\ &=-1+\int_{0}^{1}\mathrm{d}x\,\frac{1-2x^{2}-x^{4}}{\left(1+x^{2}\right)\sqrt{1-x^{4}}}+\int_{0}^{1}\mathrm{d}x\,\frac{1+x^{2}}{\sqrt{1-x^{4}}}\\ &=-1+\int_{0}^{1}\mathrm{d}x\,\frac{d}{dx}\left[x\sqrt{\frac{1-x^{2}}{1+x^{2}}}\right]+\int_{0}^{1}\mathrm{d}x\,\frac{1+x^{2}}{\sqrt{1-x^{4}}}\\ &=-1+\int_{0}^{1}\mathrm{d}x\,\frac{1+x^{2}}{\sqrt{1-x^{4}}}\\ &=-1+\frac14\left[\operatorname{B}{\left(\frac14,\frac12\right)}+\operatorname{B}{\left(\frac34,\frac12\right)}\right].\\ \end{align}$$

Hence,

$$\mathcal{I}=\pi-\frac{\pi}{8}\left[\operatorname{B}{\left(\frac14,\frac12\right)}+\operatorname{B}{\left(\frac34,\frac12\right)}\right].\blacksquare$$