An inequality about the 2-Wasserstein distance

probability theorypushforwardwasserstein

Let $W_2(\mu,\nu)$ denote the $2$-Wasserstein distance between two given probability measures $\mu$ and $\nu$ on $\mathbb R^n$. For a probability measure $\mu$ and $f:\mathbb R^n\to \mathbb R^n$, let $f_{\#}\mu=\mu\circ f^{-1}$ denote the push-forward of $\mu$ under $f$, i.e. $(f_{\#}\mu)(B)=\mu(f^{-1}(B))$ for every Borel set $B$ in $\mathbb R^n$. Why does the following inequality hold true?
$$W^2_2(f_{\#}\mu,g_{\#}\mu)\leq \int_{\mathbb R^n}\|f(x)-g(x)\|^2\,d\mu(x) $$
for all $\mu$-measurable functions $f,g:\mathbb R^n\to\mathbb R^n$.

Some comment: the product measure $f_{\#}\mu\otimes g_{\#}\mu$ is a so-called transport plan and by definition of the Wasserstein distance
$$W^2_2(f_{\#}\mu,g_{\#}\mu)\leq \int_{\mathbb R^n\times \mathbb R^n}\|x-y\|^2\,d(f_{\#}\mu\otimes g_{\#}\mu)(x,y)=\int_{\mathbb R^n\times \mathbb R^n}\|f(x)-g(y)\|^2\,d\mu(x)\,d\mu(y).$$

Best Answer

The pushforward $(f,g)_\sharp\mu$ of $\mu$ under the map $x\mapsto(f(x),g(x))$ is obviously a coupling between $f_\sharp\mu$ and $g_\sharp\mu$, hence $$ W_2^2(f_\sharp\mu,g_\sharp\nu)\le\int_{\mathbb R^n\times\mathbb R^n}\Vert x-y\Vert^2\,d(f,g)_\sharp\mu(x,y)=\int_{\mathbb R^n}\Vert f(x)-g(x)\Vert^2\,d\mu(x). $$