An attempt to prove the generalization of $\sum_{n=1}^\infty \frac{(-1)^nH_n}{n^{2a}}$

alternative-proofeuler-sumsharmonic-numbersintegrationsequences-and-series

The following classical generalization

$$\sum_{n=1}^\infty\frac{(-1)^{n}H_n}{n^{2a}}=-\left(a+\frac 12\right)\eta(2a+1)+\frac12\zeta(2a+1)+\sum_{j=1}^{a-1}\eta(2j)\zeta(2a+1-2j)$$
where $\eta(a)=\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^a}=(1-2^{1-a})\zeta(a)$ is the Dirichlet eta function.

was proved by G. Bastien here page 7 Eq. 17 and also by Cornel here.


I am trying to prove it in a different way but came across an integral that can be calculated by Beta function but I want it in $\zeta$ if possible to get the right result.

Here is my approach which follows from the same idea of my solution here:

By using $$\frac1{n^{2a}}=-\frac1{(2a-1)!}\int_0^1x^{n-1}\ln^{2a-1}(x)\ dx$$

we can write

$$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^{2a}}=-\frac1{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(x)}{x}\left(\sum_{n=1}^\infty(-x)^nH_n\right)\ dx$$

$$=\frac1{(2a-1)!}\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\frac1{(2a-1)!}I_a\tag1$$


$$I_a=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\underbrace{\int_1^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx}_{x\mapsto 1/x}$$

$$=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx+\color{blue}{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{1+x}dx}-\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$

By adding

$$I_a=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx=\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x}dx-\color{blue}{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{1+x}dx}$$

to both sides, the blue integral nicely cancels out and we get

$$2I_a=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx+\underbrace{\int_0^1\frac{\ln^{2a-1}(x)\ln(1+x)}{x}dx}_{IBP}-\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$

$$=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\frac{1+2a}{2a}\int_0^1\frac{\ln^{2a}(x)}{1+x}dx$$

where

$$\int_0^1\frac{\ln^{2a}(x)}{1+x}dx=\sum_{n=1}^\infty(-1)^{n-1}\int_0^1 x^{n-1}\ln^{2a}(x)dx=(2a)!\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^{2a+1}}=(2a)!\eta(2a+1)$$

so

$$I_a=\frac12\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx-\left(a+\frac12\right)(2a-1)!\eta(2a+1)\tag2$$

Plug $(2)$ in $(1)$

$$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^{2a}}=-\left(a+\frac12\right)\eta(2a+1)+\frac1{2(2a-1)!}\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx\tag{3}$$

So any idea how to evaluate the integral in $(3)$ in a way that completes my proof?


Best Answer

In the question body in Eq $(3)$, we reached

$$\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^{2a}}=-\left(a+\frac12\right)\eta(2n+1)+\frac1{2(2a-1)!}\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx\tag{1}$$


From following the same approach of this solution, we have

\begin{align} I_a=\int_0^\infty\frac{\ln^{2a-1}(x)\ln(1+x)}{x(1+x)}dx&= - \frac{\partial^{2a-1}}{\partial m^{2a-1}} \frac{\partial}{\partial n} \operatorname{B}(m,n-m) \, \Bigg \rvert_{m=0, \, n=1} \\ &= - \frac{\partial^{2a-1}}{\partial m^{2a-1}} \operatorname{\Gamma}(m) \frac{\partial}{\partial n} \frac{\operatorname{\Gamma}(n-m)}{\operatorname{\Gamma}(n)} \, \Bigg \rvert_{m=0,\, n=1} \\ &= - \frac{\partial^{2a-1}}{\partial m^{2a-1}} \operatorname{\Gamma}(m) \operatorname{\Gamma}(1-m) [\operatorname{\psi}^{(0)} (1-m) + \gamma] ~\Bigg \rvert_{m=0} \\ &= - \frac{\partial^{2a-1}}{\partial m^{2a-1}}\frac{\pi}{\sin(\pi m)} [\operatorname{\psi}^{(0)} (1-m) + \gamma] ~\Bigg \rvert_{m=0} \\ \end{align}


Edit: Thanks to @Gary for finding the closed form of this limit. I will mention it here with more details:

We have $$ \psi(1-z)+\gamma=\sum\limits_{n= 1}^\infty {\frac{1}{{n!}}\left[ {\frac{{d^n\psi(1-z)}}{{dz^n }}}\right]_{z=0}z^n}=\sum\limits_{n = 1}^\infty {(-1)^n \frac{{\psi^{(n)}(1)}}{{n!}}z^n} $$ for $|z|<1$. Thus, $$ \frac{{\psi(1-z)+\gamma}}{z}=\sum\limits_{n=0}^\infty {(-1)^{n+1} \frac{{\psi^{(n+1)}(1)}}{{(n+1)!}}z^n} $$ for $|z|<1$ (the left-hand side is defined as a limit when $z=0$). We also have $$ \pi z\csc(\pi z)=\sum\limits_{n=0}^\infty {\frac{{(-1)^{n-1}2\pi^{2n} (2^{2n -1}-1)B_{2n}}}{{(2n)!}}z^{2n}}=2\sum\limits_{n=0}^\infty {\eta (2n)z^{2n} } $$ for $|z|<1$ (the left-hand side is defined as a limit when $z=0$).

so we have $$F(z)=\pi\csc(\pi z)[\psi(1-z)+\gamma]=\left(2\sum\limits_{n = 0}^\infty {\eta (2n)z^{2n}}\right)\left(\sum\limits_{n=0}^\infty {(-1)^{n+1} \frac{{\psi^{(n+1)}(1)}}{{(n+1)!}}z^n}\right).$$ Apply Cauchy product:

$$\left(\sum_{n=0}^\infty a_{2n} z^{2n}\right)\left(\sum_{n=0}^\infty b_{n+1} z^n\right)=\sum_{n=0}^\infty\left(\sum_{k=0}^{\lfloor \frac{n}{2}\rfloor}a_{2k} b_{n-2k+1}\right)z^n$$

we get

$$F(z)=2\sum_{n=0}^\infty\left(\underbrace{\sum_{k=0}^{\lfloor \frac{n}{2}\rfloor} \eta(2k) (-1)^{n-2k+1}\frac{\psi^{(n-2k+1)}}{(2-2k+1)!}}_{f_n}\right)z^n=2\sum_{n=0}^\infty f_n z^n.$$

Note that

\begin{align} \lim_{z\to0}\frac{\partial^{2a-1}}{\partial z^{2a-1}}F(z)&=2\lim_{z\to0}\frac{\partial^{2a-1}}{\partial z^{2a-1}} \sum_{n=0}^\infty f_n z^n\\ &=2\lim_{z\to0}\frac{\partial^{2a-1}}{\partial z^{2a-1}}\left(f_0 z^0+f_1 z^1+f_2 z^2+...\right)\\ &=2(2a-1)! f_{2a-1}\\ &=2(2a-1)!\sum_{k=0}^{\lfloor \frac{2a-1}{2}\rfloor} \eta(2k)(-1)^{2a-2k}\frac{\psi^{(2a-2k)}}{(2a-2k)!}\\ &=2(2a-1)!\sum_{k=0}^{a-1}\frac{\eta(2k)}{(2a-2k)!}\psi^{(2a-2k)}(1). \end{align} Substitute $\psi^{(a)}(1)=(-1)^{a-1}a!\zeta(a+1)$,

$$\lim_{z\to 0}\frac{\partial^{2a-1}}{\partial z^{2a-1}}F(z)=-2(2a-1)!\sum_{k=0}^{a-1}\eta(2k)\zeta(2a-2k+1)=-I_a.\tag{2}$$

Plug $(2)$ in $(1)$ we get

$$\sum_{n=1}^\infty\frac{(-1)^{n}H_n}{n^{2a}}=-\left(a+\frac 12\right)\eta(2a+1)+\sum_{k=0}^{a-1}\eta(2k)\zeta(2a-2k+1).$$


acknowledgement:

Big thanks to @ComplexYetTrivial and @Gary for their solutions here and here. With their help, the proof is now completed rigorously which I think is a new proof in the literature.


More rigorous proof of $\displaystyle\pi z\csc(\pi z)=\sum_{n=0}^\infty \eta(2n) x^{2n}:$

Set $x=0$ in the Fourier series of $\cos(z x)$: $$\cos(zx)=\frac{2z\sin(\pi z)}{\pi}\left[\frac1{2z^2}-\sum_{n=1}^\infty\frac{(-1)^n\cos(nx)}{n^2-z^2}\right],$$ we get \begin{align} \pi z \csc(\pi z)&=1-2\sum_{n=1}^\infty\frac{(-1)^n z^2}{n^2-z^2}\\ &=1-2\sum_{n=1}^\infty (-1)^n \frac{z^2/n^2}{1-z^2/n^2}\\ &=1-2\sum_{n=1}^\infty (-1)^n \left(\sum_{k=1}^\infty (z^2/n^2)^k\right)\\ &=1-2\sum_{k=1}^\infty z^{2k} \left(\sum_{n=1}^\infty \frac{(-1)^n}{n^{2k}}\right)\\ &=1-2\sum_{k=1}^\infty z^{2k} \left(-\eta(2k)\right)\\ &=2\left(\frac12+\sum_{k=1}^\infty \eta(2k) z^{2k}\right)\\ &=2\sum_{k=0}^\infty \eta(2k) z^{2k}. \end{align}