Calculus – Alternative Method to Evaluate Integral of sin^(2n)x ln(tan(x)) from 0 to ?/2

calculusdefinite integralsdigamma-functionintegrationtrigonometric-integrals

LATEST EDITION

Glad to share with you that we had found below as an answer, in general, that

$$\boxed{ \int_0^{\frac\pi2} {\sin^n x} \ln{(\tan x)} \,dx =\frac{\sqrt{\pi}}{4 \Gamma\left(\frac{n}{2}+1\right)} \Gamma\left(\frac{n+1}{2}\right) \left[\psi\left(\frac{n+1}{2}\right)-\psi\left(\frac{1}{2}\right)\right]}$$
where $n\in \mathbb N$.


After reading the post with the result
$$\int_0^{\frac\pi2} {\sin^2{x} \ln{(\tan x)} \,dx}=\frac{\pi}{4}$$
I was attracted by its decency and wanted to generalise it as
$$
I_n=\int_0^{\frac{\pi}{2}} \sin ^{2 n} x \ln (\tan x) d x \stackrel{x\mapsto\frac \pi 2- x}{=}- \int_0^{\frac{\pi}{2}} \cos ^{2 n} x \ln (\tan x) d x =-J_n,
$$

For convenience, I started with the second integral,

$$
J_n=\int_0^{\frac{\pi}{2}} \cos ^{2 n} x \ln (\tan x) d x,
$$

Letting $u=\tan x$ transforms the integral into
$$
J_n=\int_0^{\infty} \frac{\ln u}{\left(1+u^2\right)^{n+1}} d u
$$

Differentiating the following famous result w.r.t. $a$ by $n$ times $$
K(a)=\int_0^{\infty} \frac{\ln u}{a+u^2} d u=\frac{\pi \ln a}{4 \sqrt{a}}, (\textrm{ for }a>0)
$$

(refer post for details)

yields
$$
\begin{aligned}J_n&=\left.\frac{(-1)^n}{n !} \frac{\partial^n K(a)}{\partial a^n}\right|_{a=1}\\&=\left.\frac{(-1)^n \pi}{4n !} \frac{\partial^n}{\partial a^n}\left(\frac{\ln a}{\sqrt{a}}\right)\right|_{a=1}
\\&=\frac{\pi}{4 n !}\left(\frac{1}{2}\right)_n\left[\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}-n\right)\right] \cdots (*)\end{aligned}
$$

We can now conclude that

$$\boxed{J_n= \frac{\pi(2 n) !}{4^{n+1}(n !)^2}\left[\psi\left(\frac{1}{2}\right)-\psi\left(\frac{1}{2}-n\right)\right]=-I_n}$$


For examples,
$$
J_1=-\frac{\pi}{4} ; \quad J_2=-\frac{\pi}{4}; \quad J_3=-\frac{23 \pi}{96}; \quad J_4=-\frac{11\pi}{48} ; \quad J_5=-\frac{563\pi}{2560} ; \quad J_6=-\frac{1627\pi}{7680};\cdots
$$

and $$
I_1=\frac{\pi}{4} ; \quad I_2=\frac{\pi}{4}; \quad I_3=\frac{23 \pi}{96}; \quad I_4=\frac{11\pi}{48} ; \quad I_5=\frac{563\pi}{2560} ; \quad I_6=\frac{1627\pi}{7680};\cdots
$$


My questions:

  1. Any other alternative method of evaluating $\int_0^{\frac{\pi}{2}} \sin ^{2 n} x \ln (\tan x) d x $?
  2. Can the result (*) found in Wolframalpha be proved?

Best Answer

Alternatively, evaluate with the recursions below \begin{align} & \int_0^{\infty} \frac{\ln x}{\left(1+x^2\right)^{n+1}} d x =I_{n+1} = \frac{2n-1}{2n}I_n-\frac1{2n}J_n\\ & \int_0^{\infty} \frac{1}{\left(1+x^2\right)^{n}} d x =J_{n} = \frac{2n-3}{2(n-1)}J_{n-1}\\ \end{align} along with the initial values $J_1=\frac\pi2$ and $I_1=0$.

Related Question