Summation – Alternating Sum of Reciprocals of Binomial Coefficients

alternating-expressionbinomial-coefficientssummation

I'm looking for a simple proof of the identity
$$ \sum_{k=0}^n \frac{(-1)^k}{\binom{n}{k}} = \frac{n+1}{n+2} (1+(-1)^n) $$
relying only on elementary properties of binomial coefficients. I obtained this by starting with the integral representation
$$ \frac{(a-1)!(b-1)!}{(a+b-1)!} = \int_0^{\infty} \frac{t^{b-1}}{(1+t)^{a+b}} \, dt, \hspace{0.5cm} a,b \in \mathbb{N}, $$
setting $a=n-k+1, b=k+1$ and adding, which gives
$$ \frac{1}{n+1} \sum_{k=0}^n \frac{(-1)^k}{\binom{n}{k}} = \sum_{k=0}^n (-1)^k \frac{(n-k)! k!}{(n+1)!} = \int_0^{\infty} \frac{1}{(1+t)^{n+2}} \sum_{k=0}^n (-t)^k \, dt = \int_0^{\infty} \frac{1}{(1+t)^{n+2}} \frac{(-t)^{n+1}-1}{-t-1} \, dt $$
$$ = (-1)^n \int_0^{\infty} \frac{t^{n+1}}{(1+t)^{n+3}} \, dt + \int_0^{\infty} \frac{dt}{(1+t)^{n+3}} = \frac{(-1)^n+1}{n+2} $$
Is there an easier way, something which doesn't rely on the integral representation? Thanks.

Best Answer

We have $$(-1)^kk!(n-k)!=\dfrac{1}{n+2}\left[(-1)^k(k+1)!(n-k)!-(-1)^{k-1}k!(n+1-k)!\right]$$ Therefore \begin{align*}\sum_{k=0}^n\dfrac{(-1)^k}{n\choose k}&=\dfrac{1}{n!}\sum_{k=0}^n(-1)^kk!(n-k)!\\ &=\dfrac{1}{n!(n+2)}\left[(-1)^n(n+1)!0!-(-1)0!(n+1)!\right] \\ &=\dfrac{(n+1)![(-1)^n+1]}{n!(n+2)} \\ & = \dfrac{(n+1)[(-1)^n+1]}{n+2}\end{align*}

Related Question