Alternate complex binomial series sum

sequences-and-series

Calculation of $\displaystyle \sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r\cdot \frac{1}{\binom{2n}{r}}$ is

My Try: Using $$\int^{1}_{0}x^m(1-x)^ndx = \frac{1}{(m+n+1)}\cdot \frac{1}{\binom{m+n}{n}}$$

So $\displaystyle \int^{1}x^{2n-r}(1-x)^r=\frac{1}{2n}\cdot \frac{1}{\binom{2n}{r}}$

Sum convert into $\displaystyle 2n\sum^{2n-1}_{r=1}(-1)^{r-1}r\int^{1}_{0}x^{2n-r}(1-x)^rdx$

$\displaystyle \Longrightarrow 2n \int^{1}_{0}x^{2n}\sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r \cdot \bigg(1-\frac{1}{x}\bigg)^rdx$

Could some help me to solve it , Thanks

Best Answer

$\text{Lemma: } \sum_{k=0}^{n-1} k x^k=\frac{(n-1)x^n+1}{(x-1)}-\frac{(x^n-1)}{(x-1)^2} $$\text{Proof: }\sum_{k=0}^{n-1} x^k=\frac{x^n-1}{x-1}\implies\sum_{k=0}^{n-1} k x^{k-1}=\frac{n(x-1)x^{n-1}-(x^n-1)}{(x-1)^2}$

$$\sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r\cdot \frac{1}{\binom{2n}{r}}=\sum^{2n-1}_{r=1}(-1)^{r-1}\cdot r\cdot(2n+1)\int_0^1t^{2n-r}(1-t)^{r}dt$$$$=-(2n+1)\int_0^1t^{2n}\sum_{r=1}^{2n-1}r\Big(1-\frac{1}{t}\Big)^rdt$$$$=-(2n+1)\int_0^1t^{2n}\bigg(\frac{(2n-1){\Big(1-\frac{1}{t}\Big)}^{2n}+1}{\frac{-1}{t}}-\frac{{\Big(1-\frac{1}{t}\Big)}^{2n}-1}{(\frac{-1}{t})^2}\bigg)dt$$

$$=(2n+1)\int_0^1\bigg({(2n-1)t{(1-t)}^{2n}+t^{2n+1}}+t^2{(1-t)}^{2n}-t^{2n+2}\bigg)dt$$

$$=(2n+1)\bigg(\frac{(2n-1)}{(2n+2)(2n+1)}+\frac{1}{2n+2}+\frac{2}{(2n+1)(2n+2)(2n+3)}-\frac{1}{2n+3}\bigg)=\frac{n}{n+1}$$

$\blacksquare$