Absolute convergence of $\sum\limits_{k=0}^{\infty}2^{-(k+1)}\sum\limits_{j=0}^{k}2^ja_j$

convergence-divergencereal-analysissequences-and-seriessolution-verification

Let be $\sum\limits_{n=0}^{\infty}a_n$ an absolutely convergent series and $b_k:=2^{-(k+1)}\sum\limits_{j=0}^{k}2^ja_j$. Show that $\sum\limits_{k=0}^{\infty}b_k$ converges absolutely.

Best Answer

If $a_j$ are nonnegative real numbers, then we're free to change the order $\sum\limits_{k=0}^\infty\sum\limits_{j=0}^k=\sum\limits_{j=0}^\infty\sum\limits_{k=j}^\infty$: $$\sum_{k=0}^\infty 2^{-k-1}\sum_{j=0}^k 2^j a_j=\sum_{j=0}^\infty 2^j a_j\underbrace{\sum_{k=j}^\infty 2^{-k-1}}_{=2^{-j}}=\sum_{j=0}^\infty a_j.$$

For the general case, we use $|b_k|\leqslant 2^{-k-1}\sum\limits_{j=0}^k 2^j|a_j|$ and the above to get $\sum\limits_{k=0}^\infty|b_k|\leqslant\sum\limits_{j=0}^\infty|a_j|$.

Related Question