About the sequence $n^{\frac{1}{n}} -1$

limitsreal-analysissequences-and-series

I am having trouble with this multiple-select mcq question:

The value of $n^{\frac{1}{n}} -1$

  1. tends to $0$ as $n\to \infty$,
  2. is greater than $\frac{\log n}{n}$ for all $n\geq 3$,
  3. is greater than $\log n$ for all $n\geq 3$,
  4. is greater than $\frac{1}{\sqrt{n}}$ for all $n\geq 3$.

I know that option 1 is correct, because $\lim_{n\to \infty}n^{\frac{1}{n}} =1$.

Also,

$$n^{\frac{1}{n}} -1=-1+ e^{\frac{\log n}{n}} =\frac{\log n}{n} + \frac{(\log n)^2}{n^2}/2! +…\geq \frac{\log n}{n},$$ meaning option 2 is also correct.

But I don't see how to prove or disprove the other two options.
Any help would be appreciated!

Best Answer

  1. Using the binomial theorem, $$ \begin{align} \left(1+\sqrt{\frac2n}\right)^n &\ge1\color{#AAA}{+n\sqrt{\frac2n}}+\frac{n(n-1)}2\frac2n\color{#AAA}{+\cdots}\\ &\ge n\color{#AAA}{+\sqrt{2n}+\cdots} \end{align} $$ Therefore, $1\le n^{1/n}\le1+\sqrt{\frac2n}$. thus, $$ \lim_{n\to\infty}\left(n^{1/n}-1\right)=0 $$


  2. Using the Taylor series for $e^x$, $$ \begin{align} n^{1/n} &=e^{\log(n)/n}\\ &=1+\frac{\log(n)}n+\frac12\left(\frac{\log(n)}n\right)^2+\frac16\left(\frac{\log(n)}n\right)^3+\cdots \end{align} $$ Therefore, $$ n^{1/n}-1\ge\frac{\log(n)}n $$


  3. Since 1. is true, 3 cannot be.


  4. Bernoulli's Inequality says $\left(1+\frac1{\sqrt{n}}\right)^{\sqrt{n}}\ge2$. Because $\frac{\log(x)}x$ is decreasing for $x\gt e$, for $n\ge16$, $\frac{\log\left(\sqrt{n}\right)}{\sqrt{n}}\le\frac{\log(2)}2$; that is, $n\le2^{\sqrt{n}}$. Thus, $$ \begin{align} n^{1/n} &\le2^{1/\sqrt{n}}\\ &\le1+\frac1{\sqrt{n}} \end{align} $$ Therefore, for $n\ge16$, $$ n^{1/n}-1\le\frac1{\sqrt{n}} $$