$A,B,C,D$ on a circle. $\widehat{BAC}=\widehat{BDC}$

geometry

Points $A,B,C,D$ belong to a circle. What's a rigorous yet simple proof that $\widehat{BAC}=\widehat{BDC}$ ?

Does this property have a name?

![A,B,C,D belong to a circle, BAC=BDC


I get that in the above figure:

  • summing angles, $\widehat{BOA}+\widehat{AOC}=\widehat{BOC}=\widehat{BOD}+\widehat{DOC}$
  • sum of the angles of isosceles triangle $AOB$ is $\Pi$, thus
    $\widehat{BOA}=\Pi-2\widehat{BAO}\quad$ and similarly
    $\widehat{AOC}=\Pi-2\widehat{OAC}\quad$
    $\widehat{BOD}=\Pi-2\widehat{BDO}\quad$
    $\widehat{DOC}=\Pi-2\widehat{ODC}\quad$
  • replacing then simplifying, we get
    $\widehat{BAO}+\widehat{OAC}=\widehat{BDO}+\widehat{ODC}\quad$ thus
    $\widehat{BAC}=\widehat{BDC}\quad$ Q.E.D.

However this reasoning seems dependent on the order of points on the circle, and perhaps other hypothesis.

Best Answer

enter image description here

Here is a proof that an angle inscribed in an arc is half the intersepted arc. That is, $m\angle APB=\frac{1}{2}m(arc \widehat{ACB})$

Following the figure, let $\mathrm{M}$ be the center of the circle, and $\angle APB=\alpha , \angle APM=\beta\\ \mathrm{Now, \: in \: \Delta MPB,}\\ \mathrm{MP}=\mathrm{MB}\\ \implies \angle MPB= \angle MBP= \alpha + \beta\\ \implies \angle CMB= 2 ( \alpha +\beta)\\ \: \\ \mathrm{In \: \Delta MPA,}\\ \mathrm{MP} =\mathrm{MA} \\ \angle MPA= \angle MAP= \beta \\ \implies \angle CMA=2\beta\\ \mathrm{Since \:} \angle CMB= \angle CMA+ \angle AMB\\ 2(\alpha+ \beta)= 2\beta + \angle AMB\\ \implies 2\alpha=\angle AMB\\ \: \\ \mathrm{And, \: since\:} \angle APB=\alpha, \mathrm{we \: have \: shown \:that} \\ \boxed{\angle APB=\frac{1}{2} \angle AMB} $

Now, your statement, that is, angles inscribed in the same arc are congruent, is a direct consequence of the previous theorem.

For in your case, $\angle BAC= \frac{1}{2}\angle BOC\\ \angle BDC=\frac{1}{2}\angle BOC\\ \implies \angle BAC=\angle BDC$

Related Question