$a+b+c+abc=4$ and prove $\sum_{cyc}\sqrt{\frac{ab+9}{ab+9c}}\ge 3$.

contest-mathinequality

Let $a,b,c\ge 0: ab+bc+ca>0$ and $a+b+c+abc=4.$ Prove$$\sqrt{\frac{ab+9}{ab+9c}}+\sqrt{\frac{bc+9}{bc+9a}}+\sqrt{\frac{ca+9}{ca+9b}}\ge 3.$$

I tried to used AM-GM as follow:$$LHS\ge 3\sqrt[6]{\frac{(ab+9)(bc+9)(ca+9)}{(ab+9c)(bc+9a)(ca+9b)}},$$and we need to prove $(ab+9)(bc+9)(ca+9)\ge (ab+9c)(bc+9a)(ca+9b)$ but it is wrong when $a=b=2;c=0.$

Also by AM-GM$$\sum_{cyc}\sqrt{\frac{ab+9}{ab+9c}}=\sum_{cyc}\frac{ab+9}{\sqrt{(ab+9)(ab+9c)}}\ge 2\sum_{cyc}\frac{ab+9}{2ab+9c+9},$$and we need to prove $\sum_{cyc}\dfrac{ab+9}{2ab+9c+9}\ge \dfrac{3}{2},$ which is also wrong when $a=b=2;c=0.$

I think we can use Holder as$$\left(\sum_{cyc}\sqrt{\frac{ab+9}{ab+9c}}\right)^2.\sum_{cyc}(ab+9c)(ab+9)^2(kc+a+b)^3\ge \left(\sum_{cyc}(kc+a+b)(ab+9)\right)^3 .$$The last inequality is $$\left(\sum_{cyc}(kc+a+b)(ab+9)\right)^3 \ge 9\sum_{cyc}(ab+9c)(ab+9)^2(kc+a+b)^3.$$I check $k=0$ which is not good enough.

Does mixing variables method work? I hope you can help me prove this inequality. Thank you very much.

Best Answer

Some thoughts.

Fact 1. Let $x, y, z\ge 0$ with $x^2y^2 + y^2z^2 + z^2x^2 + \frac52 x^2 y^2 z^2 \ge \frac{11}{2}$. Then $x + y + z \ge 3$.
(The proof is given at the end.)

Let $$x := \sqrt{\frac{ab+9}{ab+9c}}, \quad y := \sqrt{\frac{bc+9}{bc+9a}}, \quad z := \sqrt{\frac{ca+9}{ca+9b}}.$$

We have $$x^2y^2 + y^2z^2 + z^2x^2 + \frac52 x^2 y^2 z^2 - \frac{11}{2} \ge 0. \tag{1}$$ (1) is verified by Mathematica.

By Fact 1, we have $x + y + z \ge 3$.

$\phantom{2}$


Proof of Fact 1.

Equivalently, we need to prove that, for all $x, y, z\ge 0$ with $x+y+z < 3$, $$x^2y^2 + y^2z^2 + z^2x^2 + \frac52x^2y^2z^2 < \frac{11}{2}. \tag{A1}$$

WLOG, assume that $x + y < 2$. It suffices to prove that, for all $x, y \ge 0$ with $x + y < 2$, $$x^2y^2 + y^2(3 - x - y)^2 + (3 - x - y)^2x^2 + \frac52x^2y^2(3 - x - y)^2 < \frac{11}{2}. \tag{A2}$$

Let $p = x + y, q = xy$. We have $0 \le p < 2$ and $p^2 \ge 4q$.

(A2) is written as $$f(q) := -\frac{5(p-3)^2 + 2}{2}q^2 + (2p^2 - 12p + 18)q - 9p^2 - p^4 + 6p^3 + \frac{11}{2} > 0.$$

Note that $f(q)$ is concave. Also, we have $f(0) = - 9p^2 - p^4 + 6p^3 + \frac{11}{2} > 0$ and $$f(p^2/4) = \frac{-5p^4 + 10p^3 - 3p^2 + 44p + 44}{32}(2 - p)^2 > 0.$$ Thus, $f(q) > 0$ on $[0, p^2/4]$. We are done.