A tough integral $\int_0^{\infty}\frac{\operatorname{sech}(\pi x)}{1+4x^2}\, \mathrm dx $

definite integralsgeometric seriesintegrationsummation

I was working on an integral which I found on Quora. I simplified it a lot and ended up with this intgeral

$$\int_0^{\infty}\dfrac{\operatorname{sech}(\pi x)}{1+4x^2}\, \mathrm dx $$

I tried converting this into exponential form and using geometric series which ended up in this.

$$2\sum_{k=0}^\infty (-1)^k\int_0^\infty \dfrac{e^{-(2k+1)\pi x}}{4x^2+1}\, \mathrm dx $$

I didn't try to solve this using exponential integral, as I am not that much familiar with it.

Using Wolfram|Alpha, I figured out that this integral is equal to $\frac{1}{2}\ln{2}$. The simple answer makes me suspect if the integral is just a tricky one.

How can I evaluate this integral, using this method or any other method, except contour integration?

Best Answer

Integrate as follows

\begin{align} &\int_0^{\infty}\frac{\operatorname{sech}(\pi x)}{1+4x^2}\>dx\\ \overset{t=2\pi x }=& \frac\pi2 \int_{-\infty}^{\infty}\frac{e^{\frac t2}}{(e^t+1)(\pi^2+t^2)}dt\\ =& \frac\pi2 \int_{-\infty}^{\infty}\frac{e^{\frac t2}}{e^t+1}Re\left(\frac1\pi \int_0^\infty e^{-(\pi-i t)y }dy\right)dt\\ =& \frac12 Re\int_{0}^{\infty}e^{-\pi y} \left(\int_{-\infty}^\infty \frac{e^{a t}}{e^t+1}dt \right)dy \>\>\>\>\>\>\>a= iy+\frac12\\ \overset{x=e^t}=& \frac12 Re\int_{0}^{\infty}e^{-\pi y} \left(\int_{0}^\infty \frac{x^{a-1}}{x+1}dx \right)dy \\ =& \frac12Re \int_{0}^{\infty}e^{-\pi y}\pi\csc(\pi a)\,dy \\ =& \int_{0}^{\infty} \frac\pi{e^{2\pi y}+1}dy \overset{t=e^{-2\pi y}}=\frac12\int_0^1 \frac1{1+t}dt\\ =&\frac12\ln2 \end{align}