A question about the central limit theorem and zero-one law

probability theoryreal-analysis

Q) Let $X_1,X_2,…$ be i.i.d. with $EX_1=0$ and $0<\text{Var}(X_1)<\infty$ and $S_n=X_1+…+X_n$.

Use the CLT and Kolmogorov's $0-1$ law to conclude that $\text{limsup}_n \frac{S_n}{\sqrt{n}}=\infty$ a.s.

My attempt:

$\{\text{limsup}_n S_n/\sqrt{n}=\infty\}\in T$ where $T$ is the tail sigma algebra. Thus $P(\text{limsup}_n S_n/\sqrt{n}=\infty) \in \{0,1\}$ by Kolmogorov's zero-one law.
For $M<\infty$, $\text{Var}X_1 = \sigma$, $P(\text{limsup}_n S_n/\sqrt{n}\geq M)\geq \text{limsup}_nP(S_n/\sqrt{n}\geq M)=P(\sigma\chi\geq M)>0$. I usually stumble going from finite $M$ to $M=\infty$. If I do $\text{lim}_{M\rightarrow \infty} P(\text{limsup}_n S_n/\sqrt{n}\geq M) = P(\text{limsup}_n S_n/\sqrt{n}= \infty)\geq \text{lim}_{M\rightarrow \infty}P(\sigma\chi\geq M)$ and may I know why that probability is strictly positive? Thanks.

Best Answer

(I have taken the variance to be $1$ but you only need a trivial modification when it is not $1$.

Let $0<M<\infty$. Then $P(\frac {S_n} {\sqrt n} <M) \to \Phi(M)$ where $\Phi$ is the standard normal distribution function. By Fatou's Lemma we get $P(\lim \inf \{(\frac {S_n} {\sqrt n} <M)\} \leq \Phi(M)$. This implies that $P\{\lim \sup \frac {S_n} {\sqrt n} <M\} \leq \Phi(M)<1$. By 0-1 law this implies that $P\{\lim \sup \frac {S_n} {\sqrt n} <M\}=0$ and this is true for each $M$. Hence $\lim \sup \frac {S_n} {\sqrt n}=\infty$ almost surely.