A question about Stolz-Cesàro theorem

calculusreal-analysissequences-and-series

Stolz-Cesàro theorem states that given some sequence $ \left(a_{n}\right)_{n\geq1} $ and a monotone strictly increasing sequence that diverge $ \left(b_{n}\right)_{n\geq1} $ , such that $$ \lim_{n\to\infty}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L $$

Then the following holds:

$ \lim_{n\to\infty}\frac{a_{n}}{b_{n}}=L $

Now, given a divergent sum $ \sum_{n=1}^{\infty}a_{n} $, we have that also $ \frac{1}{n}\sum_{k=1}^{n}a_{k} $ diverge to $ \infty $ as we can see here

So consider $ a_{n}=\sum_{k=1}^{n}\frac{1}{k} $ and $ b_{n}=n $. Then

$$ \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\frac{\frac{1}{n+1}}{1}\underset{n\to\infty}{\longrightarrow}0 $$

But $$ \lim_{n\to\infty}\frac{a_{n}}{b_{n}}=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}a_{k} $$

Does not converge to $0 $.

Hows is this possible consider that Stolz-Cesàro theorem is true? What am I missing?

Thanks in advance.

Best Answer

Your mistake is here:

But $$ \lim_{n\to\infty}\frac{a_{n}}{b_{n}}=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}a_{k} $$

Actually, $$ \lim_{n\to\infty}\frac{a_{n}}{b_{n}}=\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac 1 k=0.$$