A proof of Banach-Steinhaus theorem via convex analysis

banach-spacesconvex-analysisfunctional-analysislinear-transformations

Disclaimer: This thread is meant to record. See: SE blog: Answer own Question and MSE meta: Answer own Question. Anyway, it is written as problem. Have fun! 🙂


Theorem: Let $X$ be a Banach space and $Y$ a normed space. Let $\mathcal{T}$ be a family of coninuous linear mappings from $X$ into $Y$. Suppose that $\mathcal{T}$ is pointwise bounded, that is, for each $x \in X$, the set $\{T x \mid T \in \mathcal{T}\}$ is bounded in $Y$. Then the family $\mathcal{T}$ is bounded in the normed space $\mathcal{L}(X, Y)$ of all continuous linear mappings from $X$ into $Y$.

Best Answer

We need the following lemma.

Lemma: Let $C$ be an open convex subset of a Banach space $X$. Let $\mathcal{F}$ be a family of lower semi-continuous convex functions on $C$. If $\mathcal{F}$ is pointwise bounded, then $\mathcal{F}$ is locally equi-Lipschitz and locally equi-bounded.

Let $X',Y'$ be the dual spaces of $X,Y$ respectively. Let $B_{Y'} := \{\varphi \in Y' \mid \|\varphi\|=1\}$. Consider the new collection $$ \Phi := \{ \varphi \circ T \mid T \in \mathcal T, \varphi \in B_{Y'}\} \subset X'. $$

We have $| \varphi \circ T (x)| = | \varphi (T (x))| \le \|\varphi \|\cdot \|T(x)\| = \|T(x)\|$. Hence $\Phi$ is pointwise bounded. By our Lemma, $\Phi$ is locally equi-bounded. Then there is $m,r>0$ such that $$ |\varphi \circ T (x)| \le m \quad \forall x \in B(0, r), T \in \mathcal T, \varphi \in B_{Y'}. $$ It follows that $$ \left |\varphi \circ T \left ( \frac{x}{\|x\|} \frac{r}{2} \right) \right| \le m \quad \forall x\in X, T \in \mathcal T, \varphi \in B_{Y'}. $$ So $$ \left |\varphi \circ T \left ( x \right) \right| \le \frac{2m}{r} \|x\| \quad \forall x\in X,T \in \mathcal T, \varphi \in B_{Y'}. $$

Notice that $\|y\| = \max_{\varphi \in B_{Y'}} \varphi(y)$ for all $y\in Y$. So $$ \left \|T \left ( x \right) \right\| \le \frac{2m}{r} \|x\| \quad \forall x\in X,T \in \mathcal T. $$

Finally, $$ \|T\| \le \frac{2m}{r} \quad \forall T \in \mathcal T. $$