A limit involving Riemann zeta function $\zeta(s)$

analytic-number-theoryriemann-zeta

I am reading Apostol's "Introduction to Analytic Number Theory". In Chapter 3, he defines Riemann Zeta Function, $\zeta(s)$, by the equation
\begin{equation}
\zeta(s) =
\sum_{n = 1}^{\infty} \frac{1}{n^s} \quad \text{if } s > 1,
\end{equation}

and by the equation
\begin{equation}
\zeta(s) = \lim_{x \to \infty} \left( \sum_{n \leq x} \frac{1}{n^s} – \frac{x^{1 – s}}{1 -s} \right) \quad \text{if } 0 < s < 1.
\end{equation}

Then he derives the following asymptotic formulas.
\begin{equation} \label{harmonic_partial_sums}
\sum_{n \leq x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right),
\end{equation}

\begin{equation} \label{1/ns partial sums}
\sum_{n \leq x} \frac{1}{n^s} = \zeta(s) + \frac{x^{1 – s}}{1 – s} + O(x^{-s}),
\end{equation}

where $C$ is the Euler-Mascheroni constant. Looking at these formulas, one might suspect (naively) that
\begin{equation}
\lim_{s \to 1} \left( \zeta(s) + \frac{x^{1 – s}}{1 -s} \right) = \log x + C.
\end{equation}

I tried to prove this by going back to the Abel summation formula but came across the integral
\begin{equation}
\int_{x}^{\infty} \frac{\{t\}}{t^{s+1}} \, dt
\end{equation}

whose limit does not exist as $s$ approaches $1$. I would highly appreciate if I could know whether the limit exists and if it exists what's its value.

Best Answer

The Riemann zeta function has a simple pole at $s=1$, with residue $1$. If you take $x\gt0$ a real number, as I think you are, then: $$\begin{align}\lim_{s\to1}(\zeta(s)+x^{1-s}(1-s)^{-1})&=\lim_{s\to1}\left[\frac{x^{1-s}-1}{1-s}+\underset{\longrightarrow\gamma}{\underbrace{(\zeta(s)-(s-1)^{-1})}}\right]\\&\overset{L.H}=\gamma+\lim_{s\to1}\frac{(-\ln x)x^{1-s}}{-1}\\&=\ln(x)+\gamma\end{align}$$

As you expected, where the constant $C$ is the $\gamma$ the Euler-Mascheroni constant, or the first Stieltjes constant.

To see where these constants are coming from, I will reference for you an answer someone gave me a few months ago, here. No complex analysis is involved, really - you should only understand that "analytic continuation is unique" to understand why Conrad's zeta is the same as your zeta.

$$\gamma=\lim_{n\to\infty}\left[-\ln n+\sum_{m=1}^n\frac{1}{m}\right]$$