A fact about $\Pi_1$ formulas in $\mathsf{PA}$

first-order-logiclogic

Let $\mathop{\mathrm{Prov}}_{\mathsf{PA}}(\ulcorner\phi\urcorner)$ be the formula in the first-order language of $\mathsf{PA}$ which says that $\mathsf{PA}\vdash\phi$, where $\ulcorner\phi\urcorner$ denotes the Gödel number of $\phi$, and let $\mathop{\mathrm{Con}}_{\mathsf{PA}}(\ulcorner\phi\urcorner)=\lnot\mathop{\mathrm{Prov}}_{\mathsf{PA}}(\ulcorner\lnot\phi\urcorner)$.

Claim: If $\phi\in\Pi_1$, then $\mathsf{PA}+\mathop{\mathrm{Con}}_{\mathsf{PA}}(\ulcorner\phi\urcorner)\vdash\phi$.

I think I can prove this along these lines: Let $\mathfrak{A}$ be the standard model of $\mathsf{PA}$. By $\Sigma_1$-completeness applied to $\lnot\phi\in\Sigma_1$, we know
$$\textstyle\mathfrak{A}\models\lnot\phi\rightarrow\mathop{\mathrm{Prov}}_{\mathsf{PA}}(\ulcorner\lnot\phi\urcorner)\tag{1}$$
Since the argument for this can be carried out in $\mathsf{PA}$, it follows that
$$\textstyle\mathsf{PA}\vdash\lnot\phi\rightarrow\mathop{\mathrm{Prov}}_{\mathsf{PA}}(\ulcorner\lnot\phi\urcorner)\tag{2}$$
so $\mathsf{PA}\vdash\mathop{\mathrm{Con}}_{\mathsf{PA}}(\ulcorner\phi\urcorner)\rightarrow\phi$ by contrapositive and $\mathsf{PA}+\mathop{\mathrm{Con}}_{\mathsf{PA}}(\ulcorner\phi\urcorner)\vdash\phi$ by modus ponens.

I'm fuzzy on the move from (1) to (2). Assuming it's correct, how can I more formally justify this?

I searched for similar questions on the site but may have missed one. If I did, a pointer is appreciated.

Best Answer

Below I suppress Godel numbering for brevity.

I think bringing in the standard model makes things less clear. The key point is that PA proves its own $\Sigma_1$-completeness, that is, for each $\Sigma_1$ sentence $\varphi$ we have $\mathsf{PA}\vdash\varphi\rightarrow\mathrm{Prov}_\mathsf{PA}(\varphi)$ (that's crucially just a one-way implication of course). Taking contrapositive of the right hand side and using the fact that the negation of a provability statement is a consistency statement, this is just $$\mathsf{PA}\vdash \mathrm{Con}_\mathsf{PA}(\neg\varphi)\rightarrow\neg\varphi,$$ whence by the deduction theorem we get $$\mathsf{PA}+\mathrm{Con}_\mathsf{PA}(\neg\varphi)\vdash\neg\varphi$$ as desired.

Now just replace "$\neg\varphi$" by "$\psi$" - if $\varphi$ is arbitrary $\Sigma_1$ then $\psi$ is arbitrary $\Pi_1$.

Related Question