A contest-math inequality: $(a+b)^2+(a+b+4c)^2 \geq \frac{100abc}{a+b+c}$

algebra-precalculuscontest-mathinequalitymaxima-minimasolution-verification

I completed my steps like this:

Let's prove our last inequality:

$$a^3 + 3 a^2 b + 5 a^2 c + 3 a b^2 + 12 a c^2 + b^3 + 5 b^2 c + 12 b c^2 + 8 c^3 \geq 40 a b c $$

Let, $$m=\frac ba, \qquad n=\frac ca$$

We have $$m^3+3m^2+3m+1+12n^2+5n+5m^2n+12mn^2+8n^3 \geq40 mn$$

Then,

$$m^3+3m^2+3m+1+12n^2+5n+5m^2n+12mn^2+8n^3=(m^3+8n^3+1)+(5n+5mn^2)+(3m^2+12n^2)+(3m+12mn^2) \geq 40mn$$

Finally we get,

$$\color {red} {\begin{cases} m^3+8n^3+1 \thinspace \geq \thinspace 6mn \\ 5n+5mn^2\thinspace \geq \thinspace 10mn \\ 3m^2+12n^2 \thinspace \geq \thinspace 12mn \\ 3m+12mn^2 \thinspace \geq \thinspace 12mn \end{cases}}\color {red}{\Longrightarrow} \\ \\ \\ \color{blue}
\Longrightarrow \color{blue} {\boxed{m^3+3m^2+3m+1+12n^2+5n+5m^2n+12mn^2+8n^3 \geq 40 mn}} $$

Equality only holds for $m=1$ and $n=\dfrac 12$.

Q.E.D.

If $a,b,c$ are positive real numbers prove that the following inequality and find the equality condition.

$$(a+b)^2+(a+b+4c)^2 \geq \frac{100abc}{a+b+c}$$

This inequality was presented to the students on a official paper. I will write my attempts very short.

$$(a+b+c)((a+b)^2+(a+b+4c)^2)-100abc \geq 0 \\
2 (a^3 + 3 a^2 b + 5 a^2 c + 3 a b^2 – 40 a b c + 12 a c^2 + b^3 + 5 b^2 c + 12 b c^2 + 8 c^3) \geq 0 \\
a^3 + 3 a^2 b + 5 a^2 c + 3 a b^2 + 12 a c^2 + b^3 + 5 b^2 c + 12 b c^2 + 8 c^3 \geq 40 a b c \\$$

We have,

$$a^3 + 3 a^2 b + 5 a^2 c + 3 a b^2 + 12 a c^2 + b^3 + 5 b^2 c + 12 b c^2 + 8 c^3 \geq \\ \geq 9 \sqrt[9]{a^3 \times 3 a^2 b \times 5 a^2 c \times 3 a b^2 \times 12 a c^2 \times b^3 \times 5 b^2 c \times 12 b c^2 \times 8 c^3}= \\ =9 \times (2^7 \times 3^4 \times 5^2 )^{\frac 19}\times abc\approx 35.955 abc \leq 40 abc $$

In other words,

$$\text{min} \left[ \frac {a^3 + 3 a^2 b + 5 a^2 c + 3 a b^2 + 12 a c^2 + b^3 + 5 b^2 c + 12 b c^2 + 8 c^3}{ a b c} \right]=9\times \sqrt[9]{259200} \approx 35.955 \leq40 $$

Best Answer

To demonstrate the inequality is wrong, all you need is a counterexample ... so given your analysis, can you come up with one? That should show it pretty quickly.