A closed form for $\sum_{k=0}^n \frac{ (-1)^k {n \choose k}^2}{k+1}$

binomial theorembinomial-coefficientssequences-and-seriessummation-method

Mathematica gives $$\sum_{k=0}^n \frac{(-1)^k {n \choose k}^2}{k+1}= ~_2F_1[-n,-n;2;-1],$$ where $~_2F_1$ that is Gauss hypergeometric function. Here the question is: Can one find a simpler closed form for this summation. Recently, the absolute summation for this has been discussed at MSE:

A binomial summation: $\sum_{k=0}^{n} \frac{{n \choose k}^2}{k+1}$

Best Answer

Use Binomial identity: $$(1+t)^n=\sum_{k=0}^{n} {n \choose k}t^n~~~(1)$$ Integration of (1) from $t=0$ to $t=x$,gives $$\frac{(1+x)^{n+1}-1}{n+1}= \sum_{k=0}^n {n \choose k}\frac{x^{k+1}}{k+1}~~~(2)$$ Let $t=-1/x$ in (1), then $$(-1)^n x^{-n} (1-x)^n=\sum_{k=0}^{n} (-1)^k {n \choose k} x^{-k}~~~~(3)$$ Multiplying (2) and (3) and collecting the terms of $x^1$, we get $$\frac{(-1)^n}{n+1} [(1-x^2)^{n}(1+x)-(1-x)^n]= x^n\sum_{k=0}^{n} \frac{(-1)^k {n \choose k}^2}{k+1} x^1+...+...$$ $$\implies S_n=\sum_{k=0}^n \frac{(-1)^k {n \choose k}^2}{k+1}=[x^{n+1}] \left((-1)^n \frac{ (1-x^2)^{n}(1+x)-(1-x)^n}{n+1}\right)$$ if $m=n/2]$, then $$S_n=(-1)^{m} \frac{{n \choose m}}{n+1}.$$