A characterisation of uniform convexivity

banach-spacesconvex-analysisfunctional-analysis

I want to prove that a Banach space is uniformly convex if and only if
$$\|x_n\| \to 1, \quad \|y_n\| \to 1 \quad \text{and} \quad \left\|\frac{x_n+y_n}{2}\right\|\to1$$
implies
$$ \|x_n – y_n \| \to 0.$$

It's an exercise from Werner's book (German) on functional analysis. Can someone hint to me how this can be done?

The given definition for a Banach space to be uniformly convex is:
For every $\epsilon>0$ there is a $\delta>0$ such that
$$\|x\|\leq1 \text{,} \quad \|y\|\leq1 \quad \text{and} \quad \|x-y\|\geq\epsilon$$ implies
$$\left\|\frac{x+y}{2}\right\|\leq1-\delta.$$

Best Answer

The other direction is very tricky.

For suppose that the Banach space is not uniformly convex, then there are \begin{align*} \|x_{n}\|&\leq 1\\ \|y_{n}\|&\leq 1\\ \|x_{n}-y_{n}\|&\geq\epsilon_{0}\\ \left\|\dfrac{x_{n}+y_{n}}{2}\right\|&>1-\dfrac{1}{n}. \end{align*} Consider $u_{n}=x_{n}/\|x_{n}\|$ and $v_{n}=y_{n}/\|y_{n}\|$, then $\|u_{n}\|=\|v_{n}\|=1$ and \begin{align*} \left\|\dfrac{u_{n}+v_{n}}{2}\right\|\leq\dfrac{1}{2}(\|u_{n}\|+\|v_{n}\|)=1, \end{align*} and \begin{align*} \left\|\dfrac{u_{n}+v_{n}}{2}\right\|&\geq\left\|\dfrac{x_{n}+y_{n}}{2}\right\|-\left\|\dfrac{x_{n}}{2\|x_{n}\|}-\dfrac{x_{n}}{2}\right\|-\left\|\dfrac{y_{n}}{2\|y_{n}\|}-\dfrac{y_{n}}{2}\right\|\\ &>1-\dfrac{1}{n}-\dfrac{1}{2}\|x_{n}\|\left(\dfrac{1}{\|x_{n}\|}-1\right)-\dfrac{1}{2}\|y_{n}\|\left(\dfrac{1}{\|y_{n}\|}-1\right)\\ &=\dfrac{1}{2}(\|x_{n}\|+\|y_{n}\|)-\dfrac{1}{n}\\ &\geq\left\|\dfrac{x_{n}+y_{n}}{2}\right\|-\dfrac{1}{n}\\ &>1-\dfrac{2}{n}, \end{align*} so \begin{align*} \left\|\dfrac{u_{n}+v_{n}}{2}\right\|\rightarrow 1. \end{align*} By assumption, then $\|u_{n}-v_{n}\|\rightarrow 0$. But then \begin{align*} \epsilon_{0}&\leq\|x_{n}-y_{n}\|\\ &\leq\left\|x_{n}-\dfrac{x_{n}}{\|x_{n}\|}\right\|+\left\|y_{n}-\dfrac{y_{n}}{\|y_{n}\|}\right\|+\|u_{n}-v_{n}\|\\ &=2-\|x_{n}\|-\|y_{n}\|+\|u_{n}-v_{n}\|. \end{align*} Note that $\|x_{n}\|+\|y_{n}\|>2-2/n$, hence \begin{align*} \epsilon_{0}<\dfrac{2}{n}+\|u_{n}-v_{n}\|, \end{align*} by taking $n\rightarrow\infty$, we obtain a contradiction.