$(1+A)^n \ge (1+a_1)\cdot(1+a_2)\cdots(1+a_n) \ge (1+G)^n$

a.m.-g.m.-inequalityinequality

$A$ and $G$ are arithmetic mean and the geometric mean respectively of $n$ positive real numbers $a_1$,$a_2$,$\ldots$,$a_n$ . Prove that

  1. $(1+A)^n$$\ge$$(1+a_1)\cdot(1+a_2)\cdots(1+a_n)$$\ge$$(1+G)^n$
  2. if $k$$\gt$$0$, $(k+A)^n$$\ge$$(k+a_1)\cdot(k+a_2)\cdots(k+a_n)$$\ge$$(k+G)^n$

My try (Ques -1): To prove $(1+a_1)\cdot(1+a_2)\cdots(1+a_n)$$\ge$$(1+G)^n$

$(1+a_1)\cdot(1+a_2)\cdots(1+a_n)=1+\sum{a_1}+\sum{a_1}\cdot{a_2}+\sum{a_1}\cdot{a_2}\cdot{a_3}+\cdots+(a_1\cdot{a_2}\cdots{a_n})$

Consider $a_1,a_2,\ldots,a_n$ be $n$ positive real numbers and then apply AM$\ge$GM

$\frac{(a_1+a_2+\cdots+a_n)}{n}\ge(a_1\cdot{a_2}\cdots{a_n})^\frac{1}{n}$ imples $\sum{a_1}\ge n\cdot{G}$ because $G=(a_1\cdot{a_2}\cdots{a_n})^\frac{1}{n}$

again consider $(a_1\cdot{a_2}),(a_1\cdot{a_3}),\ldots({a_1}\cdot{a_n}),(a_2\cdot{a_3}),(a_2\cdot{a_4})\ldots,(a_2\cdot{a_n}),(a_3\cdot{a_4})\ldots(a_{n-1}\cdot{a_n})$ be $\frac{n(n-1)}{2!}$ positive real numbers.

Then Applying AM$\ge$GM , we get,
$\frac{\sum{a_1}\cdot{a_2}}{\frac{n(n-1)}{2!}}$ $\ge$ $\bigl(a_{1}^{n-1}\cdot{a_{2}^{n-1}}\cdots{a_{n}^{n-1}}\bigl)^\frac{2!}{n(n-1)}$ implies $\sum{a_1}\cdot{a_2}\ge \frac{n(n-1)}{2!}G^2$

Similary , $\sum{a_1}\cdot{a_2}\cdot{a_3}\ge \frac{n(n-1)(n-2)}{3!}G^3$ and so on.

Therefore, $(1+a_1)\cdot(1+a_2)\cdots(1+a_n)\ge 1+nG+\frac{n(n-1)}{2!}G^2+\frac{n(n-1)(n-2)}{3!}G^3+\cdots+G^n$

Therefore, $(1+a_1)\cdot(1+a_2)\cdots(1+a_n)\ge (1+G)^n$

To prove $(1+A)^n$$\ge$$(1+a_1)\cdot(1+a_2)\cdots(1+a_n)$

Consider $(1+a_1),(1+a_2),\ldots,(1+a_n)$ be $n$ positive real numbers and then applying AM$\ge$GM

$\frac{(1+a_1)+(1+a_2)+\cdots+(1+a_n)}{n} \ge [(1+a_1)\cdot(1+a_2)\cdot\cdots(1+a_n)]^\frac{1}{n}$

$\frac{n+a_1+a_2+\cdots{a_n}}{n}\ge [(1+a_1)\cdot(1+a_2)\cdot\cdots(1+a_n)]^\frac{1}{n}$

$(1+A)^n\ge(1+a_1)\cdot(1+a_2)\cdot\cdots(1+a_n)$

My try (Ques -2): To prove $(k+A)^n$$\ge$$(k+a_1)\cdot(k+a_2)\cdots(k+a_n)$

Consider $(k+a_1),(k+a_2)\ldots(k+a_n)$ be $n$ positive real numbers and applying AM$\ge$GM

$\frac{(k+a_1)+(k+a_2)+\cdots(k+a_n)}{n}\ge[(k+a_1)\cdot(k+a_2)\cdots(k+a_n)]^\frac{1}{n}$

$(k+A)^n\ge (k+a_1)\cdot(k+a_2)\cdots(k+a_n)$

To prove $(k+a_1)\cdot(k+a_2)\cdots(k+a_n)$$\ge$$(k+G)^n$

$(k+a_1)\cdot(k+a_2)\cdots(k+a_n)=k^n+k^{n-1}\sum{a_1}+k^{n-2}\sum{a_1\cdot{a_2}}+\cdots+(a_1\cdot{a_2}\cdots{a_n})$

now

$\sum{a_1}\ge n\cdot{G}$,

$\sum{a_1}\cdot{a_2}\ge \frac{n(n-1)}{2!}G^2$

$\sum{a_1}\cdot{a_2}\cdot{a_3}\ge \frac{n(n-1)(n-2)}{3!}G^3$ and so on.

Therefore

$(k+a_1)\cdot(k+a_2)\cdots(k+a_n)\ge k^n+nk^{n-1}G+\frac{n(n-1)}{2!}k^{n-2}G^2+\cdots+G^n$

Therefore, $(k+a_1)\cdot(k+a_2)\cdots(k+a_n)\ge (k+G)^n$

My Ques :

  1. Have I solved the questions correctly?
  2. How to prove $\sum{a_1}\cdot{a_2}\cdot{a_3}\ge \frac{n(n-1)(n-2)}{3!}G^3$

Thanks

Best Answer

I think there is a much faster way.

  1. $\log(k+x)$ is concave, hence by Jensen's inequality $\log(k+A)\geq\frac{1}{n}\sum_{m=1}^{n}\log(k+a_m)$.
    Exponentiation leads to $(k+A)^n \geq \prod_{m=1}^{n}(k+a_m)$.
  2. Let $b_m=\log(a_m)$ or, equivalently, $a_m=e^{b_m}$. We have that $\log(k+e^x)$ is convex, since $\frac{d^2}{dx^2}\log(k+e^x)=\frac{ke^x}{(k+e^x)^2}$. This leads to $(k+G)^n\leq \prod_{m=1}^{n}(k+a_m)$.