Solved – VAR model interpretation: Coef vs Impulse response functions

granger-causalityimpulse responseinterpretationregression coefficientsvector-autoregression

In courses such as time series analysis, we learned that the relationships derived from impulse response functions or Granger causalties are more interesting than the estimation output.

I was wondering why and whether some academic literature is available.

Best Answer

Interpretability is another issue. While you are of course right that structural responses are generally of more interest, even an orthogonal impulse response generally is more useful than the estimated VAR coefficients simply because it is easier to see the dynamic response of the variables to a shock in one variable.

Here is an example from the vars package:

library(vars)
data(Canada)
var.3c <- VAR(Canada, p = 3, type = "const")
var.3c
plot(irf(var.3c, boot = FALSE))

The estimated coeffcients are

VAR Estimation Results:
======================= 

Estimated coefficients for equation e: 
====================================== 
Call:
e = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + e.l3 + prod.l3 + rw.l3 + U.l3 + const 

         e.l1       prod.l1         rw.l1          U.l1          e.l2       prod.l2         rw.l2          U.l2          e.l3       prod.l3 
   1.75274409    0.16961948   -0.08260010    0.09951924   -1.18385358   -0.10574096   -0.02438546   -0.05077361    0.58725218    0.01053871 
        rw.l3          U.l3         const 
   0.03823877    0.34138928 -150.68737459 


Estimated coefficients for equation prod: 
========================================= 
Call:
prod = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + e.l3 + prod.l3 + rw.l3 + U.l3 + const 

         e.l1       prod.l1         rw.l1          U.l1          e.l2       prod.l2         rw.l2          U.l2          e.l3       prod.l3 
  -0.14879583    1.14798569    0.02359443   -0.65814244   -0.18164920   -0.19627478   -0.20337023    0.82236693    0.57494977    0.04414683 
        rw.l3          U.l3         const 
   0.09336521    0.40078042 -195.86984902 


Estimated coefficients for equation rw: 
======================================= 
Call:
rw = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + e.l3 + prod.l3 + rw.l3 + U.l3 + const 

         e.l1       prod.l1         rw.l1          U.l1          e.l2       prod.l2         rw.l2          U.l2          e.l3       prod.l3 
-4.715930e-01 -6.499785e-02  9.090532e-01 -7.940803e-04  6.667031e-01 -2.164497e-01 -1.456573e-01 -3.013740e-01 -1.288947e-01  2.139588e-01 
        rw.l3          U.l3         const 
 1.901601e-01  1.506129e-01 -1.166855e+01 


Estimated coefficients for equation U: 
====================================== 
Call:
U = e.l1 + prod.l1 + rw.l1 + U.l1 + e.l2 + prod.l2 + rw.l2 + U.l2 + e.l3 + prod.l3 + rw.l3 + U.l3 + const 

        e.l1      prod.l1        rw.l1         U.l1         e.l2      prod.l2        rw.l2         U.l2         e.l3      prod.l3 
 -0.61773366  -0.09778145   0.01454884   0.65976287   0.51811384   0.08798974   0.06993062  -0.08098673  -0.03005992  -0.01092231 
       rw.l3         U.l3        const 
 -0.03909215   0.06684284 114.36732138 

I dare say you won't find it easy to see "what's going on".

In contrast, the plot of an impulse response function is more amenable to interpretation:

enter image description here