Solved – Sampling distribution of the radius of 2D normal distribution

multivariate analysisnormal distributionprobabilityrayleigh distribution

The bivariate normal distribution with mean $\mu$ and covariance matrix $\Sigma$ can be re-written in polar coordinates with radius $r$ and angle $\theta$. My question is: What is the sampling distribution of $\hat{r}$, that is, of the distance from a point $x$ to the estimated center $\bar{x}$ given the sample covariance matrix $S$?

Background: The true distance $r$ from a point $x$ to mean $\mu$ follows a Hoyt distribution. With eigenvalues $\lambda_{1}, \lambda_{2}$ of $\Sigma$, and $\lambda_{1} > \lambda_{2}$, its shape parameter is $q=\frac{1}{\sqrt{(\lambda_{1}+\lambda_{2})/\lambda_{2})-1}}$, and its scale parameter is $\omega = \lambda_{1} + \lambda_{2}$. The cumulative distribution function is known to be the symmetric difference between two Marcum Q-functions.

Simulation suggests that plugging in estimates $\bar{x}$ and $S$ for $\mu$ and $\Sigma$ into the true cdf works for large samples, but not for small samples. The following diagram shows the results from 200 times

  • simulating 20 2D normal vectors for each combination of given $q$ ($x$-axis), $\omega$ (rows), and quantile (columns)
  • for each sample, calculating the given quantile of the observed radius $\hat{r}$ to $\bar{x}$
  • for each sample, calculating the quantile from the theoretical Hoyt (2D normal) cdf, and from the theoretical Rayleigh cdf after plugging in the sample estimates $\bar{x}$ and $S$.

enter image description here

As $q$ approaches 1 (the distribution becomes circular), the estimated Hoyt quantiles approach the estimated Rayleigh quantiles which are unaffected by $q$. As $\omega$ grows, the difference between the empirical quantiles and the estimated ones increases, notably in the tail of the distribution.

Best Answer

As you mentioned in your post we know the distribution of the estimate of $\widehat{r_{true}}$ if we are given $\mu$ so we know the distribution of the estimate $\widehat{r^2_{true}}$ of the true $r^2$.

We want to find the distribution of $$\widehat{r^2} = \frac{1}{N}\sum_{i=1}^N (x_i-\overline{x})^T(x_i-\overline{x})$$ where $x_i$ are expressed as column vectors.

We now do the standard trick

$$\begin{eqnarray*} \widehat{r^2_{true}} &=& \frac{1}{N}\sum_{i=1}^N(x_i - \mu)^T(x_i-\mu)\\ &=& \frac{1}{N}\sum_{i=1}^N(x_i-\overline{x} + \overline{x} -\mu)^T(x_i-\overline{x} + \overline{x}-\mu)\\ &=&\left[\frac{1}{N}\sum_{i=1}^N(x_i - \overline{x})^T(x_i-\overline{x})\right] + (\overline{x} - \mu)^T(\overline{x}-\mu) \hspace{20pt}(1)\\ &=& \widehat{r^2} + (\overline{x}-\mu)^T(\overline{x}-\mu) \end{eqnarray*} $$ where $(1)$ arises from the equation $$\frac{1}{N}\sum_{i=1}^N(x_i-\overline{x})^T(\overline{x}-\mu) = (\overline{x} - \overline{x})^T(\overline{x} - \mu) = 0$$ and its transpose.

Notice that $\widehat{r^2}$ is the trace of the sample covariance matrix $S$ and $(\overline{x}-\mu)^T(\overline{x}-\mu)$ only depends only on the sample mean $\overline{x}$. Thus we have written $$\widehat{r_{true}^2} = \widehat{r^2} + (\overline{x}-\mu)^T(\overline{x}-\mu)$$ as the sum of two independent random variables. We know the distributions of the $\widehat{r^2_{true}}$ and $(\overline{x} - \mu)^T(\overline{x}-\mu)$ and so we are done via the standard trick using that characteristic functions are multiplicative.

Edited to add:

$||x_i-\mu||$ is Hoyt so it has pdf $$f(\rho) = \frac{1+q^2}{q\omega}\rho e^{-\frac{(1+q^2)^2}{4q^2\omega} \rho^2}I_O\left(\frac{1-q^4}{4q^2\omega} \rho^2\right)$$ where $I_0$ is the $0^{th}$ modified Bessel function of the first kind.

This means that the pdf of $||x_i-\mu||^2$ is $$f(\rho) = \frac{1}{2}\frac{1+q^2}{q\omega}e^{-\frac{(1+q^2)^2}{4q^2\omega}\rho}I_0\left(\frac{1-q^4}{4q^2\omega}\rho\right).$$

To ease notation set $a = \frac{1-q^4}{4q^2\omega}$, $b=-\frac{(1+q^2)^2}{4q^2\omega}$ and $c=\frac{1}{2}\frac{1+q^2}{q\omega}$.

The moment generating function of $||x_i-\mu||^2$ is $$\begin{cases} \frac{c}{\sqrt{(s-b)^2-a^2}} & (s-b) > a\\ 0 & \text{ else}\\ \end{cases}$$

Thus the moment generating function of $\widehat{r^2_{true}}$ is $$\begin{cases} \frac{c^N}{((s/N-b)^2-a^2)^{N/2}} & (s/N-b) > a\\ 0 & \text{else} \end{cases}$$ and the moment generating function of $||\overline{x} - \mu||^2$ is $$\begin{cases} \frac{Nc}{\sqrt{(s-Nb)^2-(Na)^2}} = \frac{c}{\sqrt{(s/N-b)^2-a^2}} & (s/N-b) > a\\ 0 & \text{ else} \end{cases}$$

This implies that the moment generating function of $\widehat{r^2}$ is $$\begin{cases} \frac{c^{N-1}}{((s/N-b)^2-a^2)^{(N-1)/2}} & (s/N-b) > a\\ 0 & \text{ else}. \end{cases}$$

Applying the inverse Laplace transform gives that $\widehat{r^2}$ has pdf $$g(\rho) = \frac{\sqrt{\pi}Nc^{N-1}}{\Gamma(\frac{N-1}{2})}\left(\frac{2\mathrm{i} a}{N\rho}\right)^{(2 - N)/2} e^{b N \rho} J_{N/2-1}( \mathrm{i} a N \rho).$$