Optimization – Residual Standard Error Difference Between Optim and GLM in R

maximum likelihoodoptimizationr

I try to reproduce with optim the results from a simple linear regression fitted with glm or even nls R functions.
The parameters estimates are the same but the residual variance estimate and the standard errors of the other parameters are not the same particularly when the sample size is low. I suppose that this is due differences in the way the residual standard error is calculated between Maximum Likelihood and Least square approaches (dividing by n or by n-k+1 see bellow in the example).
I understand from my readings on the web that optimization is not a simple task but I was wondering if it would be possible to reproduce in a simple way the standard error estimates from glm while using optim.

Simulate a small dataset

set.seed(1)
n = 4 # very small sample size !
b0 <- 5
b1 <- 2
sigma <- 5
x <- runif(n, 1, 100)
y =  b0 + b1*x + rnorm(n, 0, sigma) 

Estimate with optim

negLL <- function(beta, y, x) {
    b0 <- beta[1]
    b1 <- beta[2]
    sigma <- beta[3]
    yhat <- b0 + b1*x
    likelihood <- dnorm(y, yhat, sigma)
    return(-sum(log(likelihood)))
}

res <- optim(starting.values, negLL, y = y, x = x, hessian=TRUE)
estimates <- res$par     # Parameters estimates
se <- sqrt(diag(solve(res$hessian))) # Standard errors of the estimates
cbind(estimates,se)


    > cbind(estimates,se)
      estimates         se
b0     9.016513 5.70999880
b1     1.931119 0.09731153
sigma  4.717216 1.66753138

Comparison with glm and nls

> m <- glm(y ~ x)
> summary(m)$coefficients
            Estimate Std. Error   t value    Pr(>|t|)
(Intercept) 9.016113  8.0759837  1.116411 0.380380963
x           1.931130  0.1376334 14.030973 0.005041162
> sqrt(summary(m)$dispersion) # residuals standard error
[1] 6.671833
> 
> summary(nls( y ~ b0 + b1*x, start=list(b0 = 5, b1= 2)))

Formula: y ~ b0 + b1 * x

Parameters:
   Estimate Std. Error t value Pr(>|t|)   
b0   9.0161     8.0760   1.116  0.38038   
b1   1.9311     0.1376  14.031  0.00504 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6.672 on 2 degrees of freedom

I can reproduce the different residual standard error estimates like this :

> # optim / Maximum Likelihood estimate
> sqrt(sum(resid(m)^2)/n)
[1] 4.717698
> 
> # Least squares estimate (glm and nls estimates)
> k <- 3 # number of parameters
> sqrt(sum(resid(m)^2)/(n-k+1))
[1] 6.671833

Best Answer

The issues is that the standard errors comes from

$$\hat\sigma^2 (X^\top X)^{-1}$$

where $\hat\sigma^2$ is the unbiased estimator and not the MLE. See summary.lm

summary.lm
#R function (object, correlation = FALSE, symbolic.cor = FALSE, 
#R     ...) 
#R {
#R    z <- object
#R    p <- z$rank
#R    rdf <- z$df.residual
#R    ...
#R    Qr <- qr.lm(object) 
#R    ... 
#R    r <- z$residuals
#R    f <- z$fitted.values
#R    w <- z$weights
#R    if (is.null(w)) {
#R         mss <- if (attr(z$terms, "intercept")) 
#R             sum((f - mean(f))^2)
#R         else sum(f^2)
#R         rss <- sum(r^2)
#R    }
#R    ...
#R    resvar <- rss/rdf
#R    ...
#R    R <- chol2inv(Qr$qr[p1, p1, drop = FALSE])
#R    se <- sqrt(diag(R) * resvar)
#R    ...

This is the inverse observed Fisher information for $(\beta_0, \beta_1)$ conditional on $\hat\sigma^2$. Now the inverse observed Fisher information you compute is for the triplet $(\beta_0, \beta_1, \sigma)$. I.e., you use the MLE of $\sigma$ and not the unbiased estimator. Thus, I gather the standard errors should differ by factor $\sqrt{n/(n-3 + 1)}$ or something similar. This is the case

set.seed(1)
n = 4 # very small sample size !
b0 <- 5
b1 <- 2
sigma <- 5
x <- runif(n, 1, 100)
y =  b0 + b1*x + rnorm(n, 0, sigma) 

negLL <- function(beta, y, x) {
  b0 <- beta[1]
  b1 <- beta[2]
  sigma <- beta[3]
  yhat <- b0 + b1*x
  return(-sum(dnorm(y, yhat, sigma, log = TRUE)))
}

res <- optim(c(0, 0, 1), negLL, y = y, x = x, hessian=TRUE)
estimates <- res$par     # Parameters estimates
(se <- sqrt(diag(solve(res$hessian))))
#R [1] 5.690 0.097 1.653
k <- 3
se * sqrt(n / (n-k+1))
#R [1] 8.047 0.137 2.338

To elaborate more as usεr11852 requests, the log-likelihood is

$$l(\vec{\beta},\sigma) = -\frac{n}{2}\log(2\pi) - n\log{\sigma} - \frac{1}{2\sigma^2}(\vec{y}-X\vec\beta)^\top(\vec{y}-X\vec\beta)$$

where $X$ is the design matrix and $n$ is the number of observation. Consequently, the observed information matrix is

$$-\nabla_{\vec{\beta}}\nabla_{\vec{\beta}}^\top l(\vec{\beta},\sigma) = \frac{1}{\sigma^2}X^\top X$$

Now we can either plug in the MLE or the unbaised estimator of $\sigma$ as the following show

m <- lm(y ~ x)
X <- cbind(1, x)
sqrt(sum(resid(m)^2)/n       * diag(solve(crossprod(X))))
#R                     x 
#R 5.71058285 0.09732149
k <- 3
sqrt(sum(resid(m)^2)/(n-k+1) * diag(solve(crossprod(X))))
#R                   x 
#R 8.0759837 0.1376334 

We can do the same with a QR decomposition as lm does

obj <- qr(X)
sqrt(sum(resid(m)^2)/(n-k+1) * diag(chol2inv(obj$qr)))
#R [1] 8.0759837 0.1376334

So to answer

I understand from my readings on the web that optimization is not a simple task but I was wondering if it would be possible to reproduce in a simple way the standard error estimates from glm while using optim.

then you need to scale up the standard errors in the Gaussian example you use.

Related Question