How to Conduct Time-Series Clustering Based on Curve Shape

clusteringrtime series

I have sales data for a series of outlets, and want to categorise them based on the shape of their curves over time. The data looks roughly like this (but obviously isn't random, and has some missing data):

n.quarters <- 100
n.stores <- 20
if (exists("test.data")){
  rm(test.data)
}
for (i in 1:n.stores){
  interval <- runif(1, 1, 200)
  new.df <- data.frame(              
    var0 = interval + c(0, cumsum(runif(49, -5, 5))),
    date = seq.Date(as.Date("1990-03-30"), by="3 month", length.out=n.quarters),
    store = rep(paste("Store", i, sep=""), n.quarters))
  if (exists("test.data")){
    test.data <- rbind(test.data, new.df)    
  } else {
    test.data <- new.df
  }
}
test.data$store <- factor(test.data$store)

I would like to know how I can cluster based on the shape of the curves in R. I had considered the following approach:

  1. Create a new column by linearly transforming each store's var0 to a value between 0.0 and 1.0 for the entire time series.
  2. Cluster these transformed curves using the kml package in R.

I have two questions:

  1. Is this a reasonable exploratory approach?
  2. How can I transform my data into the longitudinal data format that kml will understand? Any R snippets would be much appreciated!

Best Answer

Several directions for analyzing longitudinal data were discussed in the link provided by @Jeromy, so I would suggest you to read them carefully, especially those on functional data analysis. Try googling for "Functional Clustering of Longitudinal Data", or the PACE Matlab toolbox which is specifically concerned with model-based clustering of irregularly sampled trajectories (Peng and Müller, Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions, Annals of Applied Statistics 2008 2: 1056). I can imagine that there may be a good statistical framework for financial time series, but I don't know about that.

The kml package basically relies on k-means, working (by default) on euclidean distances between the $t$ measurements observed on $n$ individuals. What is called a trajectory is just the series of observed values for individual $i$, $y_i=(y_{i1},y_{i2},\dots,y_{it})$, and $d(y_i,y_j)=\sqrt{t^{-1}\sum_{k=1}^t(y_{ik}-y_{jk})^2}$. Missing data are handled through a slight modification of the preceding distance measure (Gower adjustment) associated to a nearest neighbor-like imputation scheme (for computing Calinski criterion). As I don't represent myself what you real data would look like, I cannot say if it will work. At least, it work with longitudinal growth curves, "polynomial" shape, but I doubt it will allow you to detect very specific patterns (like local minima/maxima at specific time-points with time-points differing between clusters, by a translation for example). If you are interested in clustering possibly misaligned curves, then you definitively have to look at other solutions; Functional clustering and alignment, from Sangalli et al., and references therein may provide a good starting point.

Below, I show you some code that may help to experiment with it (my seed is generally set at 101, if you want to reproduce the results). Basically, for using kml you just have to construct a clusterizLongData object (an id number for the first column, and the $t$ measurements in the next columns).

library(lattice)
xyplot(var0 ~ date, data=test.data, groups=store, type=c("l","g"))

tw <- reshape(test.data, timevar="date", idvar="store", direction="wide")
parallel(tw[,-1], horizontal.axis=F, 
         scales=list(x=list(rot=45, 
                            at=seq(1,ncol(tw)-1,by=2), 
                            labels=substr(names(tw[,-1])[seq(1,ncol(tw)-1,by=2)],6,100), 
                            cex=.5)))

library(kml)
names(tw) <- c("id", paste("t", 1:(ncol(tw)-1)))
tw.cld <- as.cld(tw)
cld.res <- kml(tw.cld,nbRedrawing=5)
plot(tw.cld)

The next two figures are the raw simulated data and the five-cluster solution (according to Calinski criterion, also used in the fpc package). I don't show the scaled version.

alt text

alt text