Prediction Interval – How to Calculate the Prediction Interval for an OLS Multiple Regression?

least squaresmultiple regressionprediction interval

What is the algebraic notation to calculate the prediction interval for multiple regression?

It sounds silly, but I am having trouble finding a clear algebraic notation of this.

Best Answer

Take a regression model with $N$ observations and $k$ regressors: $$\mathbf{y=X\beta+u} \newcommand{\Var}{\rm Var}$$

Given a vector $\mathbf{x_0}$, the predicted value for that observation would be $$E[y \vert \mathbf{x_0}]=\hat y_0 = \mathbf{x_0} \hat \beta.$$ A consistent estimator of the variance of this prediction is $$\hat V_p=s^2 \cdot \mathbf{x_0} \cdot(\mathbf{X'X})^{-1}\mathbf{x'_0},$$ where $$s^2=\frac{\Sigma_{i=1}^{N} \hat u_i^2}{N-k}.$$ The forecast error for a particular $y_0$ is $$\hat e=y_0-\hat y_0=\mathbf{x_0}\beta+u_0-\hat y_0.$$ The zero covariance between $u_0$ and $\hat \beta$ implies that $$\Var[\hat e]=\Var[\hat y_0]+\Var[u_0],$$ and a consistent estimator of that is $$\hat V_f=s^2 \cdot \mathbf{x_0} \cdot(\mathbf{X'X})^{-1}\mathbf{x'_0} + s^2.$$

The $1-\alpha$ $\rm confidence$ interval will be: $$y_0 \pm t_{1-\alpha/2}\cdot \sqrt{\hat V_{p}}.$$ The $1-\alpha$ $\rm prediction$ interval will be wider: $$y_0 \pm t_{1-\alpha/2}\cdot \sqrt{\hat V_{f}}.$$

Related Question