Fisher Information – Expected Value of a Score Function: Gradient of the Log-Likelihood Function

fisher information

according to the Wikipedia: https://en.wikipedia.org/wiki/Score_(statistics), expected value of a score function should equals to zero and the proof is following:

\begin{equation}
\begin{aligned}
\mathbb{E}\left\{ \frac{ \partial }{ \partial \beta } \ln \mathcal{L}(\beta|X) \right\} &=\int^{\infty}_{-\infty} \frac{\frac{ \partial }{ \partial \beta } p(X|\beta)}{p(X|\beta)} p(X|\beta) dX \\
&= \frac{ \partial }{ \partial \beta }\int^{\infty}_{-\infty} p(X|\beta) dX = \frac{ \partial }{ \partial \beta } 100\% = 0
\end{aligned}
\end{equation}

My question is why the probability density function of random variable $\frac{ \partial }{ \partial \beta } \ln p(X|\beta)$ is $p(X|\beta)$? Many thanks!!

Best Answer

Because your random variable is still $X$ with pdf $p(X|\beta)$.

When you take the expectation with respect to $X$ of $\frac{ \partial }{ \partial \beta } \ln \mathcal{L}(X|\beta)$ this is just a function of $X$, hence the pdf is $p(X|\beta)$.

I see it's also called "law of the unconscious statistician".