Solved – Covariance of linear combinations of correlated random variables

covariancelinearmathematical-statisticsnormal distributionvariance

I am trying to predict the covariance of two linear combinations of normal random variables:
$\newcommand{\N}{\mathcal N}$
\begin{align}
X &= w\N(u_1,\sigma^2_1)+(1-w)\N(u_2,\sigma^2_2) \\
Y &= w\N(u_1,\sigma^2_1)+(1-w)\N(u_3,\sigma^2_3)
\end{align}
where $w$ can range from $0$ to $1$.

I've tried solving for $\text{cov}(X,Y)$ using
\begin{align}
\text{cov}(X,Y) &= \text{E}(XY) – \text{E}(X)\text{E}(Y) \\
\text{cov}(X,Y) &= \text{corr}(X,Y)\sigma_X\sigma_Y
\end{align}

but am not sure how to find $\text{E}(XY)$ in the first case and $\text{corr}(X,Y)$ in the second.

Best Answer

HINT:

\begin{align*} cov(aX+bY, cV + dW) &= E[acXV + adXW + bcYV + bd YW]\\ &-E[aX+bY]E[cV+dW]\\ &= acE[XV]+adE[XW]+ bcE[YV] + bdE[YW]\\ &- acE[X]E[V]-adE[X]E[W]-bcE[Y]E[V]-bdE[Y]E[W]\\ &= ac \times cov(X,V) + ad \times cov(X,W) + bc\times cov(Y,V) + bd \times cov(Y,W) \end{align*}

Related Question