Solved – Confidence interval in U(0, $\theta$)

confidence intervaluniform distribution

Let $X_n = X_1, X_2,…, X_n$ be a random sample of $X \sim U(0, \theta)$,
where $\theta$ is an unknown parameter. Assuming confidence level $1 —
\alpha$, find confidence interval for $\theta$ where:

a) n = 2

b) n $\geqslant$ 100

I've got answers for this question yet I still cannot solve it. I need an explanation.

Answers:

a) $\langle\frac{2\overline{X}_2}{2-\sqrt{\alpha}},\frac{2\overline{X}_2}{\sqrt{\alpha}}\rangle$

b) $\langle\frac{2\overline{X}_{100}}{2-\sqrt{\alpha}},\frac{2\overline{X}_{100}}{\sqrt{\alpha}}\rangle$

Best Answer

I am wondering how you get this confidence interval. My method could be using the pivot, but result in different interval.

Let $Q = \frac{X_{(n)}}{\theta}$, where $X_{(n)}$ is the largest order statistics of $X_1, ......, X_n$. Then,

$$P(Q \le t) = \prod_{i=1}^nP(X_i \le t\theta) = t^n$$

, so Q is a pivot (independent of the parameter $\theta$). Take $c_n = \alpha^{\frac{1}{n}}$ we obtain $P(Q \le c_n) = \alpha$ and given that $P(Q \le 1) = 1$, we have

$$1 - \alpha = P(c_n \le Q \le 1) = P(c_n \le \frac{X_{(n)}}{\theta} \le 1) =P(X_{(n)} \le \theta \le \frac{X_{(n)}}{c_n})$$

So the $1-\alpha$ confidence interval for $\theta$ is $\Big(X_{(n)}, \frac{X_{(n)}}{\alpha^{\frac{1}{n}}}\Big)$

Finally you can plug in n = 2 and n = 100 to get different answers. (But sorry it is not the same you give here.)

Related Question