Poisson Random Variables – Conditional Expectation of Poisson Random Variables

conditional probabilityconditional-expectationself-study

Suppose $X_1,X_2,\ldots,X_n$ is a random sample from a Poisson Distribution with mean $\theta$. How can I find the conditional expectation $E \left( X_1+X_2+3X_3 |\sum_{i=1}^n X_i \right)$?

I know that $\sum X_i $ has a $poisson (n\theta$) distribution. Similarly the random variable $X_1+X_2+X_3$ has a $poisson (3\theta)$ distribution. I get confused with the required summations afterwards though.

Thank you.

Best Answer

Define $S_n=\sum_{i=1}^n X_i$. By symmetry, $$ \mathrm{E}\left[ X_1 \mid S_n \right] = \mathrm{E}\left[ X_2 \mid S_n \right] = \dots = \mathrm{E}\left[ X_n \mid S_n \right] \quad \textrm{a.s.} \quad (*) $$ Hence, using $(*)$ and the linearity of the conditional expectation, we have $$ \mathrm{E}\left[ X_1 \mid S_n \right] = \frac{1}{n} \mathrm{E}\left[ X_1+\dots+X_n \mid S_n \right] = \frac{1}{n} \mathrm{E}\left[ S_n \mid S_n \right] = \frac{S_n}{n} \quad \textrm{a.s.} $$ The same reasoning leads to $$ \mathrm{E}\left[ X_1 +X_2 +3X_3\mid S_n \right] = 5\,\mathrm{E}\left[ X_1 \mid S_n \right] = \frac{5\,S_n}{n} \quad \textrm{a.s.} $$ Now, remember that $S_n\sim \mathrm{Poisson}(n\theta)$, and find the pmf of $5\,S_n/n$ (consider its support).

Related Question