probability – Proving Upper Bound for Truncated Difference in Probability Inequalities

bias-variance tradeoffmathematical-statisticsprobabilityprobability-inequalitiesrobust

Let $X$ and $Y$ be real valued random variables. And define a truncation operator as:

$\begin{align}
X(\tau) = (|X| \wedge \tau) \; \text{sign}(X), \quad \tau > 0
\end{align}$

Now, I am not sure how to show the inequality:

$\begin{aligned} & \mathbb{E}\left[X Y\right]-\mathbb{E}\left[X(\tau) Y(\tau)\right] \\ \leq & \mathbb{E}\left[\left|XY\right|\left(\mathbb{I}\left\{\left|X\right| \geq \tau\right\}+\mathbb{I}\left\{\left|Y\right| \geq \tau\right\}\right)\right]\end{aligned}$

Best Answer

As in this question, the idea is directly comparing $f(X, Y) = XY - X(\tau)Y(\tau)$ and $g(X, Y) = |XY|(I(|X| \geq \tau) + I(|Y| \geq \tau))$ on different regions of $\Omega$.

On the region $[|X| < \tau, |Y| < \tau]$, $f(X, Y) = 0 \leq g(X, Y) = 0$.

On the region $[|X| < \tau, |Y| \geq \tau]$, $f(X, Y) = X(Y - Y(\tau)) = X(Y - \tau\operatorname{sign}(Y))$, $g(X, Y) = |XY|$. To see $f(X, Y) \leq g(X, Y)$ on this region, note that if $|Y| \geq \tau$, then $|Y - \tau\operatorname{sign}(Y)| \leq |Y|$.

On the region $[|X| \geq \tau, |Y| \geq \tau]$, $f(X, Y) = XY - \tau\operatorname{sign}(X)\tau\operatorname{sign}(Y)$, $g(X, Y) = 2|XY|$. It follows by $|\tau\operatorname{sign}(X)| = \tau \leq |X|$ and $|\tau\operatorname{sign}(Y)| = \tau \leq |Y|$ on this region that \begin{align} f(X, Y) \leq |f(X, Y)| \leq |XY| + |\tau\operatorname{sign}(X)| |\tau\operatorname{sign}(Y)| \leq |XY| + |XY| = g(X, Y). \end{align}

Now you should be able to finish the comparison on the remaining $1$ region.

Related Question