# [Tex/LaTex] Package amsmath Error: Multiple \label’s: label ‘{33}’ will be lost

equations

I have this code and

Package amsmath Error: Multiple \label's: label '{33}' will be lost.


error: can anyone help me?

\begin{align}
\label{33}
\begin{split}
\alpha_{ng}^{\min}-\alpha_{ng}^{\max}+\gamma_n\leq C_{ng}\forall g\in\Omega^{G-n},\forall n\in\Omega^N
\end{split}
\label{34}
\begin{split}
\beta_\ell^{\min}-\beta_\ell^{\max}+\frac{\epsilon_\ell^{\min}}{\beta_\ell}-\frac{\epsilon_\ell^{\max}}{\beta_\ell}-\gamma_{n}=0
\forall l\in\Omega^L\mid \textit{FB}(\ell)=n
\end{split}
\\
\label{35}
\begin{split}
&\beta_\ell^{\min}-\beta_\ell^{\max}+\frac{\epsilon_\ell^{\min}}{\beta_\ell}-\frac{\epsilon_\ell^{\max}}{\beta_\ell}+\gamma_{n}=0\\
\forall \ell\in\Omega^L\mid \textit{TB}(\ell)=n
\end{split}
\\
\label{36}
\begin{split}
&-\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{FB}(\ell)=n}}}\epsilon_\ell^{\min}+\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{TB}(\ell)=n}}}\epsilon_\ell^{\min}
+\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{FB}(\ell)=n}}}\epsilon_\ell^{\max}-\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{TB}(\ell)=n}}}\epsilon_\ell^{\max}
+\\\delta_n^{\min}-\delta_n^{\max}=0~~\forall n\in \Omega^N
\end{split}
\\
\label{37}
&\gamma_n \leq \textit{VOLL}_n~~\forall n\in\Omega^N\\
\label{38}
&\bar{D}_{n}-\widehat D_{n}\leq\widetilde D_{n}\leq\bar{D}_{n}+\widehat D_{n}\\
\label{39}
&\sum_{ n\in\Omega^N}|\frac{\widetilde D_{n}-\bar D_{n}}{\widehat D_{n}}|\leq\textit{DR}
%\end{flalign}
\\
\label{40}
\begin{split}
&\alpha_{ng}^{\min},\alpha_{ng}^{\max}\geq 0\quad\forall g \in \Omega^{G-n},\forall n \in \Omega^{N};\\
\beta_\ell^{\min},\beta_\ell^{\max},  \epsilon_\ell^{\min},\epsilon_\ell^{\max}\geq 0\quad\forall l \in \Omega^{L};\\
\gamma _n \in R\quad\forall n \in \Omega^{N};\\
\bar{D}_{n} \in R\quad\forall n \in \Omega^{N}\\
\end{split}
\end{align}


\begin{align}
\label{33}
\begin{split}
\alpha_{ng}^{\min}-\alpha_{ng}^{\max}+\gamma_n\leq C_{ng}\forall g\in\Omega^{G-n},\forall n\in\Omega^N
\end{split}
\\
\label{34}
\begin{split}
\beta_\ell^{\min}-\beta_\ell^{\max}+\frac{\epsilon_\ell^{\min}}{\beta_\ell}-\frac{\epsilon_\ell^{\max}}{\beta_\ell}-\gamma_{n}=0\\\forall l\in\Omega^L\mid \textit{FB}(\ell)=n
\end{split}
\\
\label{35}
\begin{split}
\beta_\ell^{\min}-\beta_\ell^{\max}+\frac{\epsilon_\ell^{\min}}{\beta_\ell}-\frac{\epsilon_\ell^{\max}}{\beta_\ell}+\gamma_{n}=0\\
\forall \ell\in\Omega^L\mid \textit{TB}(\ell)=n
\end{split}
\\
\label{36}
\begin{split}
-\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{FB}(\ell)=n}}}\epsilon_\ell^{\min}+\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{TB}(\ell)=n}}}\epsilon_\ell^{\min}
+\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{FB}(\ell)=n}}}\epsilon_\ell^{\max}-\smashoperator{\sum_{\substack{ \ell \in\Omega^L\st\\ \textit{TB}(\ell)=n}}}\epsilon_\ell^{\max}
+\\\delta_n^{\min}-\delta_n^{\max}=0~~\forall n\in \Omega^N
\end{split}
\\
\label{37}
&\gamma_n \leq \textit{VOLL}_n~~\forall n\in\Omega^N\\
\label{38}
&\bar{D}_{n}-\widehat D_{n}\leq\widetilde D_{n}\leq\bar{D}_{n}+\widehat D_{n}\\
\label{39}
&\sum_{ n\in\Omega^N}|\frac{\widetilde D_{n}-\bar D_{n}}{\widehat D_{n}}|\leq\textit{DR}
%\end{flalign}
\\
\label{40}
\begin{split}
&\alpha_{ng}^{\min},\alpha_{ng}^{\max}\geq 0\quad\forall g \in \Omega^{G-n},\forall n \in \Omega^{N};\\
&\beta_\ell^{\min},\beta_\ell^{\max},  \epsilon_\ell^{\min},\epsilon_\ell^{\max}\geq 0\quad\forall l \in \Omega^{L};\\