# [Tex/LaTex] Left align right-aligned text in align environment

alignhorizontal alignment

I have the following piece of code:

\documentclass{article}
\oddsidemargin 43pt
\textheight 20.4 cm
\textwidth 14.0 cm
\parskip 6.8 pt
\parindent 12 pt
\usepackage{mathtools}
\begin{document}

\begin{table}[h]
\hrule
\begin{align}
\label{E}
\tag{E}
&\text{Axioms:} &&s =t  &&&\text{for all equations $s=t$ in $E$}\\[0mm]
\label{Ref}
\tag{Reflexivity}
&\text{ }
&&s=s  &&&\text{for every term $s$}
\\[0mm]
\label{Sym}
\tag{Symmetry}
&\text{Rules:}
&& \frac{s=t}{t=s}
&&&\text{ }
\\[0mm]
\label{Trans}
\tag{Transitivity}
&\text{ }
&&\frac{s=t,t=v}{s=v}
&&&\text{ }
\\[0mm]
\label{Cong}
\tag{Congruence}
&\text{ }
&&\frac{s_1=t_1, \ldots, s_n = t_n}{f(s_1,\ldots,s_n) = f(t_1,\ldots t_n)}
&&&\text{for every $n$-ary $f$}
\\[0mm]
\label{Subs}
\tag{Substitution}
&\text{ }
&&\frac{s=t}{\sigma(s) = \sigma(t)}
&&&\text{for $\sigma$ a substitution}
\end{align}
\hrule
\caption{Axioms and rules for an equational logic with axiom set $E$}
\label{tab: equational logic}
\end{table}

\end{document}


With the following output:

As can be seen the first two columns are aligned to the left, and the second two to the right. Now I want the third and fourth column also to be aligned to the left (fourth not necessarily).

I tried a tabular, but then I can't refer to the lines (using \eqref{E} for instance). I also like the vertical spacing between the lines (which fails in a tabular environment)

I hope anyone knows how to do this

As far as I can tell you want something like

Just remove a & from each row so the \text in the last column are left aligned rather than right.

\documentclass{article}
\oddsidemargin 43pt
\textheight 20.4 cm
\textwidth 14.0 cm
\parskip 6.8 pt
\parindent 12 pt
\usepackage{mathtools}
\begin{document}

\begin{table}[htp]
\hrule
\begin{align}
\label{E}
\tag{E}
&\text{Axioms:} &&s =t  &&\text{for all equations $s=t$ in $E$}\\[0mm]
\label{Ref}
\tag{Reflexivity}
&\text{ }
&&s=s  &&\text{for every term $s$}
\\[0mm]
\label{Sym}
\tag{Symmetry}
&\text{Rules:}
&& \frac{s=t}{t=s}
&&\text{ }
\\[0mm]
\label{Trans}
\tag{Transitivity}
&\text{ }
&&\frac{s=t,t=v}{s=v}
&&\text{ }
\\[0mm]
\label{Cong}
\tag{Congruence}
&\text{ }
&&\frac{s_1=t_1, \ldots, s_n = t_n}{f(s_1,\ldots,s_n) = f(t_1,\ldots t_n)}
&&\text{for every $n$-ary $f$}
\\[0mm]
\label{Subs}
\tag{Substitution}
&\text{ }
&&\frac{s=t}{\sigma(s) = \sigma(t)}
&&\text{for $\sigma$ a substitution}
\end{align}
\hrule
\caption{Axioms and rules for an equational logic with axiom set $E$}
\label{tab: equational logic}
\end{table}

\end{document}