# [Tex/LaTex] Error: File ended while scanning the use of \beamer@modeinline

beamererrors

Using the following code, I consistently get an error stating:
File ended the use of \beamer@modeinline.

Additionally, the console output contains the following:
Runaway argument?
{\par \par \begin {document} \par \par \begin {frame} \begin {i\ETC.
! File ended the use of \beamer@modeinline.

Any help is greatly appreciated! MWE:

    \documentclass{beamer}
\mode<presentation> {

\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{beamerthemesplit}
\setbeamertemplate{footline}[frame number]

\begin{document}

\begin{frame}
\begin{itemize}
\item The usual necessary conditions for an optimum:
\begin{align}
$F_{K}(K_{t}^{d}$,$L_{t}^{d})&=r_{t}$\\
$F_{L}(K_{t}^{d}$,$L_{t}^{d})&=w_{t}$
\end{align}

\item[-] (These two equations do not determine $K_{t}^{d}$ and $L_{t}^{d}$
from given $r_{t}$ and $w_{t}$; they only determine $\dfrac{{K_{t}^{d}} {L_{t}^{d}}}$
\item In equilibrium:
\begin{itemize}
\item The marginal product of capital equal the rental price of capital.
\item The marginal product of labor equals the wage.
\end{itemize}
\begin{itemize}
\item (Note that $F_{K}(K_{t}$,$L_{t}$) represents the first derivative of
the production function w.r.t. capital).
\end{itemize}
\end{frame}

\end{document}


As magula mentioned in his/her comment, there are several errors.

• Missing } in the preamble
• the align environment is already in math mode
• you open more itemize environments then you close
• random distribution of brackets (have a look at $F_{K}(K_{t}$,$L_{t}$) -- should the () be inside or outside of the math environment? Why do you close and reopen it anyway?)
• no need for graphicx with beamer
• not a tex problem, but in your text you open a ( which you never close ...

\documentclass{beamer}
\mode<presentation> {

%\usepackage{graphicx}
\usepackage{booktabs}
\usepackage{beamerthemesplit}
\setbeamertemplate{footline}[frame number]

}

\begin{document}

\begin{frame}
\begin{itemize}
\item The usual necessary conditions for an optimum:
\begin{align}
F_{K}(K_{t}^{d},L_{t}^{d})&=r_{t}\\
F_{L}(K_{t}^{d},L_{t}^{d})&=w_{t}
\end{align}
\item[-] (These two equations do not determine $K_{t}^{d}$ and $L_{t}^{d}$ from given $r_{t}$ and $w_{t}$; they only determine $\dfrac{K_{t}^{d}}{L_{t}^{d}}$
\item In equilibrium:
\begin{itemize}
\item The marginal product of capital equal the rental price of capital.
\item The marginal product of labor equals the wage.
\end{itemize}
%\begin{itemize}
\item (Note that $F_{K}(K_{t},L_{t}$) represents the first derivative of the production function w.r.t. capital).
\end{itemize}
\end{frame}

\end{document}