You could just do something simple like this
\documentclass{article}
\newcommand\answerbox{%%
\fbox{\rule{1in}{0pt}\rule[-0.5ex]{0pt}{4ex}}}
\pagestyle{empty}
\begin{document}
Put you answer here: \answerbox
\end{document}
which requires no use of TikZ
.

A bit of an explanation.
The syntax for \rule
is as follows:
\rule[<lift>]{<width>}{<height>}
I use two separate \rule
commands because if I wrote something like
\rule{1in}{4ex}
I just get a solid black box defeating the purpose.
By using a negative value for <lift>
I can drop the bottom of the box below the baseline.
\fbox
then adds more space. These values are controlled with the following lengths
\fboxrule
\fboxsep
Generally, \fboxrule
is 0.4pt
and \fboxsep
is 3pt
, but you can adjust those values as desired.
Something like this?
\documentclass[tikz,border=5]{standalone}
\begin{document}
\begin{tikzpicture}
\foreach \i [evaluate={\ii=int(\i-1);}] in {0,...,11}{
\foreach \j [evaluate={\jj=int(\j-1);}] in {0,...,11}{
\coordinate [shift={(\j,\i)}] (n-\i-\j) at (rand*180:1/4+rnd/8);
\ifnum\i>0
\draw [help lines] (n-\i-\j) -- (n-\ii-\j);
\fi
\ifnum\j>0
\draw [help lines] (n-\i-\j) -- (n-\i-\jj);
\fi
}}
\end{tikzpicture}
\end{document}

And some triangles...
\documentclass[tikz,border=5]{standalone}
\begin{document}
\begin{tikzpicture}
\foreach \i [evaluate={\ii=int(\i-1);}] in {0,...,7}{
\foreach \j [evaluate={\jj=int(\j-1);}] in {0,...,7}{
\coordinate [shift={(\j,\i)}] (n-\i-\j) at (rand*180:1/4+rnd/8);
\ifnum\i>0
\draw [help lines] (n-\i-\j) -- (n-\ii-\j);
\fi
\ifnum\j>0
\draw [help lines] (n-\i-\j) -- (n-\i-\jj);
\ifnum\i>0
\pgfmathparse{int(rnd>.5)}
\ifnum\pgfmathresult=0
\draw [help lines] (n-\i-\j) -- (n-\ii-\jj);
\else%
\draw [help lines] (n-\ii-\j) -- (n-\i-\jj);
\fi%
\fi
\fi
}}
\end{tikzpicture}
\end{document}

Although something like asymptote
may be better for this kind of thing (see g.kov's answer), if you like python
and use scipy
and are happy compiling with --shell-escape
the following (rather impractical) code may be a useful starting point.
\documentclass[tikz,border=5]{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=1.11}
\usepgfplotslibrary{patchplots}
{\obeyspaces\obeylines%
\gdef\delauney#1#2{%
\immediate\write18{echo "x y" > #1_points.dat; echo "%
import numpy as np
points=np.array([#2])
for point in points:
print point[0], point[1]
" | python >> #1_points.dat}%
\immediate\write18{echo "p1 p2 p3" > #1_triangles.dat; echo "%
import scipy.spatial as sp
import os
import numpy as np
points=np.array([#2])
triangulation=sp.Delaunay(points)
for simplex in triangulation.simplices:
print
for vertex in simplex:
print vertex,
" | python >> #1_triangles.dat}%
}}
\begin{document}
\def\points{(0,0)}
\foreach \i in {1,...,50}{
\pgfmathparse{rand*10cm}\let\x=\pgfmathresult
\pgfmathparse{rand*10cm}\let\y=\pgfmathresult
\xdef\points{\points,(\x,\y)}%
}
\delauney{d1}{\points}
\begin{tikzpicture}
\begin{axis}[width=10cm, height=10cm, axis lines=none]
\addplot [patch, patch refines=0, mesh, help lines,
patch table={d1_triangles.dat}] table {d1_points.dat};
\end{axis}
\end{tikzpicture}
\end{document}

Best Answer
Here's a quick option:
Which results in