[Tex/LaTex] Better looking equations

equationsformatting

I am trying to find a way to make the equations that appear in this text a bit more better looking…

\documentclass{article}
\usepackage{amsmath, amssymb}
\usepackage{relsize}

\begin{document}

\begin{equation}
    N_\text{c}(i) = \dfrac{N_\text{o}(i)}{1 - \mathlarger{‎‎\sum}_{j=i_0}^{i-1}N_\text{o}(j)/N_\text{b} - N_\text{o}(i)/2N_\text{b}}\label{eq:Bollinger}
\end{equation}

\begin{equation}
    N_\text{c}(i) = -N_\text{b}\ln{\left(1-\dfrac{N_\text{o}(i)/N_\text{b}}{1-\mathlarger{\sum}_{j=i_0}^{i-1}N_\text{o}(j)/N_\text{b}}\right)}
\end{equation}

\begin{equation}
    N_\text{c}(i) = -N_\text{b}\dfrac{\ln{\left(1-\dfrac{N_\text{o}(i)/N_\text{b}}{1-\mathlarger{\sum}_{j=i_0}^{i-1}N_\text{o}(j)/N_\text{b}}\right)}}{1-\sigma\tanh\left(\sigma\mathlarger{\sum}_{j=i_0}^{i-1}N_\text{c}(j)/N_\text{b}\right)}
\end{equation}

\end{document}

enter image description here

Any idea on how to make them look more beautiful?

Best Answer

Avoid having blank lines before display mat, or consecutive display math (TeX can not really handle either in a sane way) and keep control over the delimiters by avoiding \left\right I guessed you want to keep the \limits setting of the summation so I kept the normal summation (which has better vertical alignment) and made a larger but still fixed bracket size to cope with the large numerator.

enter image description here

\documentclass{article}
\usepackage{amsmath, amssymb}
\makeatletter
\def\Biggg#1{{\hbox{$\left#1\vbox to21\p@{}\right.\n@space$}}}
\def\Bigggl{\mathopen\Biggg}
\def\Bigggm{\mathrel\Biggg}
\def\Bigggr{\mathclose\Biggg}
\makeatother

\begin{document}

align (or gather if no alignement)
\begin{align}
    N_{\mathrm{c}}(i) &= \frac{N_\text{o}(i)}{1 - ‎‎\sum\limits_{j=i_0}^{i-1}N_\text{o}(j)/N_{\mathrm{b}} - N_\text{o}(i)/2N_{\mathrm{b}}}\label{eq:Bollinger}
\\[\jot]
    N_{\mathrm{c}}(i) &= -N_{\mathrm{b}}\ln{\Biggl(1-\frac{N_\text{o}(i)/N_{\mathrm{b}}}{1-\sum\limits_{j=i_0}^{i-1}N_\text{o}(j)/N_{\mathrm{b}}}\Biggr)}
\\[\jot]
    N_{\mathrm{c}}(i) &= -N_{\mathrm{b}}\frac{\ln{\Bigggl(1-\dfrac{N_\text{o}(i)/N_{\mathrm{b}}}{1-\sum\limits_{j=i_0}^{i-1}N_\text{o}(j)/N_{\mathrm{b}}}\Bigggr)}}{1-\sigma\tanh\left(\sigma\sum\limits_{j=i_0}^{i-1}N_{\mathrm{c}}(j)/N_{\mathrm{b}}\right)}
\end{align}

\end{document}